
Experiment 2

Reaction Time

2.1 Objectives

• Make a series of measurements of your reaction time.

• Use statistics to analyze your reaction time.

2.2 Introduction

The purpose of this lab is to demonstrate repeated measurements that do
not yield identical results; but this variation can give us an uncertainty (δx)
on the measurements. In science, we often take measurements of the same
thing multiple times and want to know how these measurements relate to
each other. Today, we will be looking at your reaction time, and will try
to find your average reaction time. After finding your reaction time you
will find a measure of how confident you are in this value and place your
reaction times into a predictable model.

2.3 Key Concepts

If you don’t remember your Physics I lecture material, you may need to
refer to the chapters in an introductory physics textbook. Alternatively, you
can find a summary on-line at Hyperphysics.1 Look for keywords: mean,
standard deviation, gaussian distribution

1http://hyperphysics.phy-astr.gsu.edu/hbase/hph.html
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2. Reaction Time

2.4 Theory

Two of the main purposes of this experiment are to familiarize yourself with
the taking of experimental data and with the reduction of such data into a
useful and quantitative form.

In any experiment, one is concerned with the measurement of some
physical quantity. In this particular experiment it will be your reaction time.
When you make repeated measurements of a quantity you will find that your
measurements are not all the same, but vary over some range of values. As
the spread of the measurements increases, the reliability or precision of the
measured quantity decreases. If the measured quantity is to be of any use
in further work, or to other people, it must be capable of being described in
simple terms. One method of picturing measured values of a single quantity
is to create a histogram.

The histogram is a diagram drawn by dividing the original set of mea-
surements into intervals or “bins” of predetermined size, and counting the
number of measurements within each bin. One then plots the frequency
(the number of times each value occurs) versus the values themselves. A his-
togram has the advantage of visually presenting the distribution of readings
or measurements. A typical histogram is shown in Fig. 2.1. It displays the
number of measurements for a given reaction time. For example, the first
bin has 2 measurements between 0.195 seconds and 0.200 seconds. When
placing the values into bins, one systematically puts values that occur on
the bin limits into the next higher bin.

When analyzing data using a histogram, the distribution often suggests
that there is a “best” or most likely value, around which the individual
measurements are grouped. Intuitively one might say that the best value is
somehow related to the middle of the distribution, while the uncertainty is
related to the spread of the distribution. The following formulas, which we
will define, will in general only have significance for symmetrical distributions.
Using mathematical statistical theory it turns out that the best value is
nothing more than the arithmetic average or mean of our measurements,
which we will denote with the symbol: x.

Best value = average = mean = x =

∑
xi
N

where ∑
xi = x1 + x2 + x3 + ...+ xN
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2.4. Theory

Figure 2.1: A histogram showing 25 measurements of reaction time using bin
sizes of 0.005 seconds. Note that if you add up the number of measurements
(from the y-axis) in each bin you get a total of 25.
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2. Reaction Time

N is the total number of measurements and xi are the values of individual
measurements (i.e. x1, x2, x3, etc.).

We now need to define a quantity that is connected with the width of
the distribution curve. We use a quantity that tells us how the individual
measurements deviate from the central (mean) value of the distribution.
This is called the “standard deviation”, denoted by “s”, and is defined
as follows:

s =

√∑
(xi − x)2

N − 1

where

∑
(xi − x)2 = (x1 − x)2 + (x2 − x)2 + (x3 − x)2 + ...+ (xN − x)2

We are also interested in the uncertainty of the mean x. That is, for
different sets of data, by how much does the mean (x) for each set deviate
from one another. This uncertainty is characterized by the width of the
experimental distribution of values of the mean x called the “standard
deviation of the mean”, denoted by sm, and is calculated by:

sm =
s√
N

Note: The larger the number (N) of measurements made of
a quantity the smaller the random uncertainty associated (or sm)
with the mean value (x).

If the number of readings is very high and the bins are small, the
histogram approaches a continuous curve and is called a “distribution curve”.
Many theoretical distribution curves have been defined and their properties
evaluated, but the one that is most significant in the theory of measurement
is the Gaussian or “Normal” distribution. If all of the experimental data you
obtain corresponds to one physical quantity, then for a very large number of
measurements they will be described by the Gaussian distribution with a
peak at the average (aka mean) value x.

Some of the properties of this continuous distribution are that it is
symmetric around a peak value and that it falls to zero on either side of the
peak, giving it a “bell shaped” appearance (see Fig. 2.2). We use the Greek
letter sigma “σ” to represent the standard deviation when referring to a
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2.5. In today’s lab

Figure 2.2: A Gaussian distribution curve with the mean x, ±s (σ) and ±2s
(2σ) points labelled.

Gaussian distribution and ”s” for the standard deviation calculated from
a finite (limited) sets of observations (“s” is the best estimate of “σ” for
a finite set of observations). When considering Gaussian distributions, the
area enclosed by the range ±σ around the peak will contain 68% of the area
of the curve (or 68% of the measurements). This means that an individual
measurement has a 68% chance of falling within a region ±σ around the
peak, or “mean” value, of the distribution. An area bounded by the range
±2σ will contain 95% of the area of the curve and therefore represent a 95%
chance that an individual measurement will fall within this region of the
distribution. This is illustrated in Fig. 2.2.

2.5 In today’s lab

In today’s lab, you will be measuring your own reaction time and will use
the above statistical formulae to hopefully create a Gaussian distribution
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2. Reaction Time

of your reaction times. There should be sufficient time available to collect
data and do the complete lab for both yourself and your partner.

2.6 Equipment

• Stop watch. - To run the stop watch, press START to start and press
STOP or the red button to stop. In this lab, we will start the timer
using the red remote start button. After getting your measurement,
press the RESET button to return the timer to zero. It should be
noted that you can increase the precision of the timer by holding the
STOP button for 2 seconds. After increasing the precision of the timer,
the smallest increment of measurement will go from 0.001 seconds to
0.0001 seconds. To go back, simply hold STOP again for 2 seconds.

Figure 2.3: The stopwatch used for this experiment.

22 Last updated January 5, 2016



2.7. Procedure

2.7 Procedure

Note: Before starting, please practice steps 1–3 a few times before recording
your data.

1. Put your finger on the STOP button while your partner takes the red
START button in the wired remote.

2. The partner with the START button will secretly start the timer.

3. Try and stop the clock as quickly as possible.

4. Record your time in the Time column of the “.xls” spreadsheet in the
Reaction folder and reset the timer.

5. Repeat steps 1–4 25 times.

6. On a separate sheet of paper, calculate (by hand) the values x, s,
and sm for N = 5 trials. Be sure to show your work!

7. On the spreadsheet, calculate the mean by putting the equation
“=SUM(B12:B16)/5” in cell C19. Note that the “SUM” function can be
used to find the sum of a group of numbers, and that B12:B16 will
evaluate the sum from cell B12 to B16 (B12, B13, B14, B15, B16).
The mean is simply the sum divided by the number of values in that
sum (in this case we have 5 values). Make sure this value matches the
number you calculated by hand.

8. Now fill in column C using the formula “=(B12-$C$19)” in the cell
C12 and fill down. The use of $ in front of C and in front of 19
”locks” in the cell that has the mean value so that when you fill down,
that cell will not change in the formula. For example, when using
the fill down feature in excel, the next cell would have the equation
“=(B13-$C$19)”, and so on.

9. Fill in column D by putting “=C12^2” in cell D12 and fill down again.
Note how this calculated value is used in the formula for standard
deviation “s”.

10. On the spreadsheet, calculate the standard deviation in the appropriate
cell by using the formula “=SQRT(SUM(D12:D16)/4)”. Here we have
that N = 5, so our denominator N − 1 = 4. Make sure this value
matches the number you calculated by hand!
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2. Reaction Time

11. Now calculate the standard deviation of the mean in the appropriate
cell by using the formula “=C21/SQRT(5)”. Make sure this value
matches the number you calculated by hand.

12. Using the methods above and the equations from the Theory section
of this lab, fill in the remaining cells on the excel sheet. You do NOT
need to do hand calculations for N=10 and N=25! Your mean and
standard deviation of the mean should change as you add more trials
to its calculation, but the standard deviation should remain about the
same.

13. Record your standard deviation in the box below for future reference.
You will need them in a later lab.

s = δt =

14. Transfer your data from column B into KaleidaGraph and plot a
histogram. Do this by going to Gallery I Stat and select Histogram.

15. Adjust the range of values shown on the x-axis such that the minimum
is a few hundredths lower than your lowest measured time and the
maximum is a few hundredths greater than your greatest measured
time. Do this by going to Plot I Axis Options I Limits, and enter
the correct values in their respective boxes.

16. Change the number of bins such that your histogram looks similar to
the one shown in Fig. 2.1. Do this by going to Plot I Plot Options I
Histogram I Specifying the Number of Bins, select Fixed, input
an appropriate integer number, and press OK. Make sure most of the
bins are filled in so that there are not many gaps in your histogram.

17. Make sure your histogram is properly labeled and print.

18. Please label by hand the positions of x, x + s, and x − s on your
histogram.
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2.8. Comparing Data

2.8 Comparing Data

In just about every experiment in this course you will be asked if two
quantities are compatible (or consistent). The following describes how to
determine if two pieces of data are consistent (or compatible). Use this
procedure to answer the last question of this lab and then use it as a reference
whenever you are asked if two pieces of data are compatible or consistent.

Let us denote the pieces of data by d1 and d2. We’ll arbitrarily set d2 as
our expected value, denoted by e, and d1 as the data, denoted by d. If d = e
or d− e = 0, then they are clearly compatible but we want a mathematical
test for compatibility. To do that we will use the formulas described below.
We often use D to denote the difference between two quantities:

D = d− e (2.1)

This comparison must take into account the uncertainties in the observa-
tion of both measurements. The data values are d±δd and e±δe. To perform
the comparison, we need to find δD. δD is the uncertainty for the difference
between d and e as shown in Formula 2.1. The addition/subtraction rule
for uncertainties is:

δD = δd+ δe (2.2)

We are interested in knowing if the difference (D) between the 2 data
points is smaller than the uncertainty in the difference (δD). This is
expressed by:

|D| ≤ δD (2.3)

In Fig. 2.4 we visually demonstrate three possible cases (A, B, and C)
involving consistency checks. For all three cases, the value for d±δd is 12±3
(d = 12 and δd = 3) but the value for e changes (e = 8, 6, 5 respectively),
while the value for δe remains the same (δe = 3). The values for d and
e are represented by the circles while their uncertainties, δd and δe, are
represented by the bars. We say the measurements d and e are compatible
if their error bars touch or overlap. In case A the values are consistent as
their error bars overlap. Case B is also consistent as their error bars touch.
The values are inconsistent in Case C as their error bars do not overlap or
touch.

Equations 2.2 and 2.3 express in algebra the statement that “d and e are
compatible if their error bars touch or overlap” (see Fig. 2.4). The combined
length of the error bars is given by Eq. 2.2 and |D| is the separation between
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2. Reaction Time

Figure 2.4: Visual representation of a consistency check.

d and e. The error bars will overlap if d and e are separated by less than
the combined length of their error bars, which is what Eq. 2.3 says. Using
Fig. 2.4 and the given equations, we can see that D = 4, 6, 7 respectively
and δD = 6 for all cases. We can then see that |D| ≤ δD for cases A and B,
so they are consistent. However, for case C, we can see that |D| � δD, so
the values are not consistent. For more information on using uncertainties
to compare data see Appendix B.

2.9 Checklist

1. The filled Excel spreadsheet plus the formula view.

2. The histogram.

3. Calculations done by hand for mean, standard deviation and standard
deviation of the mean for N=5.

4. Answers to questions 1-5.
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2.10. Questions

2.10 Questions

1. For all of your 25 measurements indicate on your spreadsheet whether or
not each measurement lies between x± s. How many trials would you have
expected to be within that range for a pure Gaussian distribution? How
many of your trials were in that range for your distribution? How does your
distribution of measurements compare to a Gaussian distribution? If you
made many sets of 25 trials of your reaction time, would there always be
the same number of trials in that range?
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2. Reaction Time

2. Suppose your lab partner was talking to the students at an adjacent lab
table when you started the timer. As a result, the time registered on the
timer when it was stopped was 10 seconds. How many standard deviations
(s) from your mean value does this represent? Should you include this data
point with the rest of your data? Why or why not?

3. Compare the mean, the standard deviation and the standard deviation of
the mean for N = 10 with those for N = 5 and N = 25. Are the values the
same? Why or why not? Explain.
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2.10. Questions

4. If you have already taken 25 measurements, how many more measurements
of reaction time would you have to take to reduce sm by a factor of two,
assuming s does not change? Justify your response.

5. Two red blood cell counts are (4.52± 0.14)× 106 cells
cm3 and (4.84± 0.18)×

106 cells
cm3 . Would you conclude that these measurements are consistent with

being from the same human? Evaluate the difference and comment. (Use
the formulas outlined in the Comparing Data section). Would your answer

change if the second blood cell count is (4.87± 0.18)× 106 cells
cm3 ?
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