
Experiment 8

Rotational Motion: Moment of
Inertia

8.1 Objectives

• Familiarize yourself with the concept of moment of inertia, I, which
plays the same role in the description of the rotation of a rigid body
as mass plays in the description of linear motion.

• Investigate how changing the moment of inertia of a body affects its
rotational motion.

8.2 Introduction

In physics, we encounter various types of motion, primarily linear or rota-
tional. Today we will investigate rotational motion and measure one of the
most important quantities pertaining to that: the moment of inertia. The
way mass is distributed greatly affects how easily an object can rotate. For
example, if you are sitting in a spinning office chair and extend your arms
out away from your body, your rotation speed will slow down. If you then
pull your arms back in as close as possible, you will start to rotate much
faster than when your arms were extended. This illustrates that not only
mass but also how it is distributed (i.e. moment of inertia) affects rotational
motion.
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8. Rotational Motion: Moment of Inertia

8.3 Key Concepts

You can find a summary on-line at Hyperphysics.1 Look for keywords:
moment of inertia, torque, angular acceleration

8.4 Theory

If we apply a single unbalanced force, F , to an object, the object will
undergo a linear acceleration, a, which is determined by the unbalanced
force acting on the object and the mass, m, of the object. Newton’s Second
Law expresses this relationship:

F = ma

where the mass is a measure of an object’s inertia, or its resistance to
being accelerated.

In rotational motion, torque (represented by the Greek letter τ), is
the rotational equivalent of force. Torque, roughly speaking, measures how
effective a force is at causing an object to rotate about a pivot point. Torque,
τ is defined as:

τ = rF sin(θ) (8.1)

where r is the lever arm, F is the force and θ is the angle between the force
and the lever arm. In this lab the lever arm, r, will be the radius at which
the force is applied (i.e. the radius of the axle). The force will be applied
tangentially (i.e. perpendicular) to the radius so θ is 90◦ and sin(90◦) = 1
making Eq. 8.1 become τ = rF .

Newton’s Second law applied to rotational motion says that a single
unbalanced torque, τ , on an object produces an angular acceleration, α,
which depends not only on the mass of the object but on how that mass is
distributed, called the moment of inertia, I. The equation which is analogous
to F = ma for an object that is accelerating rotationally is

τ = Iα (8.2)

where the units of τ are in Newton-meters (N*m), α is in radians/sec2 and
I is in kg-m2. 2

1http://hyperphysics.phy-astr.gsu.edu/hbase/hph.html
2A radian is an angle measure based upon the circumference of a circle C = 2πr

where r is the radius of the circle. A complete circle (360◦) is said to have 2π radians.
Therefore, a 1/4 circle (90◦) is π/2 radians.
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8.4. Theory

The moment of inertia, I, is a measure of the way the mass is
distributed on the object and determines its resistance to angular
acceleration. Every rigid object has a definite moment of inertia about a
particular axis of rotation. The moment of inertia of a collection of masses
is given by:

I = Σmir
2
i (8.3)

If there is only one mass (as shown in Fig. 8.1) then Eq. 8.3 becomes
I = mr2. (In order to simplify the calculation we have assumed that the
mass m is a point at the end of the lever arm r and the rod it is attached
to is massless.) To illustrate, we will calculate the moment of inertia for a
mass of 2 kg at the end of a massless rod that is 2 m in length:

I = mr2 = (2 kg)(2 m)2 = 8 kg m2

If a force of 5 N were applied to the mass perpendicular to the rod (to
make the lever arm equal to r) the torque is given by:

τ = rF = (2 m)(5 N) = 10 N m

By Eq. 8.2 we can now calculate the angular acceleration:

α =
τ

I
=

10 N m

8 kg m2
= 1.25 rad/sec2

Figure 8.1: One point mass m on a massless rod of radius r (I = mr2).

Last updated January 5, 2016 87



8. Rotational Motion: Moment of Inertia

The moment of inertia of a more complicated object is found by adding
up the moments of each individual piece. For example, the moment of
inertia of the system shown in Fig. 8.2 is found by adding up the moments
of each mass so Eq. 8.3 becomes I = m1r

2
1 +m2r

2
2. (Note that Fig. 8.2 is

equivalent to the sum of two Fig. 8.1 components.)

Figure 8.2: Two point masses on a massless rod (I = m1r
2
1 +m2r

2
2).

8.5 In today’s lab

Today you will measure the moment of inertia for several different mass
distributions. You will make a plot of the moment of inertia, I, vs. r2,
the radii that your masses were placed at, and determine if the moment of
inertia does indeed depend on both mass and its distribution. Your setup
will resemble Fig. 8.2 where the rigid body consists of two cylinders, which
are placed on a metallic rod at varying radii from the axis of rotation. You
will assume the rod is massless and will place the masses, m1 and m2, an
equal distance from the center pivot point so that r1 = r2 = r. For this case
Eq. 8.3 then becomes:

I = m1r
2
1 +m2r

2
2 = (m1 +m2)r2 (8.4)
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8.5. In today’s lab

A schematic of the equipment you will be using today is shown in Fig. 8.3.
The masses and rod are supported by a rotating platform attached to a
central pulley and nearly frictionless air bearings. If the two masses are
placed on the axis of rotation (so r = 0), then the measured moment of
inertia I is the moment of inertia of the rotating apparatus alone plus the
moment of inertia of each of the two cylinders about an axis through their
own centers of mass, which we’ll call I0. So when the masses are placed at
r = 0, I = I0. Now if the two masses are each placed a distance r from the
axis of rotation Eq. 8.4 becomes:

I = (m1 +m2)r2 + I0 (8.5)

Compare Eq. 8.5 to the equation for a straight line:

y = mx+ b

Notice that a plot of I vs. r2 should be a straight line. The slope of this
line is the sum of the masses (m1 +m2) and the y−intercept is I0.

Figure 8.3: Schematic of the moment of inertia apparatus.

To verify that the moment of inertia, I, does indeed depend on how
the masses are distributed you will use the apparatus shown in Fig. 8.3 to
calculate the angular acceleration, α, and torque, τ , of the rotating masses
and then use Eq. 8.2 to calculate I. You will plot your measured I vs. r2
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8. Rotational Motion: Moment of Inertia

and check that your slope is consistent with your mass value (m1 + m2)
thus verifying Eq. 8.5. The Excel spreadsheet requires several calculations
to arrive at values for the angular acceleration and torque that are used to
calculate the moment of inertia. The needed formulas are outlined below.

In order to get your rigid body to rotate you will wrap a string around
the central axle (also called the central pulley) and run it over the side
pulley to a known weight, M , as shown in Fig. 8.3. When you release the
weight from rest just below the side pulley and let it fall to the floor, the
tension, T , in the string will exert a torque, τ , on the rigid body causing it
to rotate with a constant angular acceleration, α. NOTE: Be careful to not
mix up the symbol for tension (T ) with the symbol for torque (τ) and the
symbol for linear acceleration (a) with the symbol for angular acceleration
(α) in the following equations.

The angular acceleration (α) of your rigid body is related to the linear
acceleration (a) of your falling mass by:

α =
Linear acceleration

Radius of axle
=
a

R
(8.6)

where R is the radius of the central axle at shown in Fig. 8.4.

Figure 8.4: A top view of the central axle with radius R and the string
providing the tension T .

You will use your knowledge of the equations of motion to find the linear
acceleration a of the weight as it falls to the floor. Remember that the
position, y, of an object released from rest (vi = 0) with an initial position
y0 (in your case y0 = h, the starting height h above the floor) is found using:

y = h− 1

2
at2 (8.7)
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8.6. Equipment

where the floor is defined to be at a height of y = 0. Since the final position
of your mass will be the floor, y = 0, and Eq. 8.7 can be rearranged to find
the linear acceleration, a:

a =
2h

t2
(8.8)

where t is the time it takes the weight to fall to the floor. Using your measured
values for the time and height you can calculate the linear acceleration a
which can then be used to calculate the angular acceleration α that will be
used in Eq. 8.2.

Next you need to find the torque τ so you can calculate I using Eq. 8.2.
Remember that torque was defined in Eq. 8.1 as the force applied times the
lever arm when the force is applied tangentially:

τ = rF (8.9)

In this lab the force (F ) comes from the tension (T ) in the string that is
acting perpendicular to the lever arm r, which here is the radius of the
central axle (R), as shown in Fig. 8.4. So for this experiment Eq. 8.9
becomes:

τ = R× T (8.10)

The tension in the string, T , comes from the weight which is hanging off the
side pulley (see Fig. 8.3). By drawing the free-body diagram acting on the
hanging mass and using Newton’s Second Law, the tension in the string is:

T = Mg −Ma (8.11)

where M is the amount of mass hanging below the side pulley, g is the
acceleration due to gravity and a is the linear acceleration given in Eq. 8.8.
Now you have all of the pieces to calculate the moment of inertia I of the
rigid body using Eq. 8.2 (I = τ/α).

8.6 Equipment

• Two cylindrical masses

• Hanger with mass

• Air bearing with central pulley

• String
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8. Rotational Motion: Moment of Inertia

8.7 Procedure

In this experiment, you will change the moment of inertia of the rotating
body by changing how the mass is distributed on the rotating body. You
will place two cylindrical masses at four different radii, such that r = r1 = r2
in each case, on a metallic rod. You will then use your measurements to
calculate the moment of inertia (I) for each of the four radial positions of
the cylindrical masses (r). The sum of the two cylindrical masses (m1 +m2)
can then be found from a graph of I versus r2.

1. Measure and record the masses of the hanging mass, M , and the two
cylinders, m1 and m2.

2. Place the cylinders on the horizontal rod such that the axes of the
cylinders are along the horizontal rod as far away from the center
as possible (as shown in Fig. 8.5). Make sure the thumbscrew on
each cylinder is tightened. The center of mass of each cylinder MUST
be the same distance (r) from the axis of rotation (i.e. r1 = r2 in
Fig. 8.3).

Figure 8.5: View of the apparatus with 2 masses at the same radius r.

3. Estimate the uncertainty in r (called δr). This should include both
the uncertainty in reading your ruler and the uncertainty in locating
the cylinder’s center of mass.
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8.7. Procedure

4. With the air supply on, attach the hanging mass (M) to one end of a
string and wind the other end around the central axle (pulley). The
string should also pass over the side pulley such that the hanging
mass is just below the side pulley as shown in Fig. 8.3. Hold the
hanging mass stationary and measure its height (h) using the floor
as your reference point. Record this elevation in your spreadsheet
and assign an appropriate uncertainty to this measurement. Make
sure to return your mass to this same height for each of your
trials.

5. Release the hanging mass and simultaneously start the desktop timer.
When the mass hits the floor, stop the timer and enter your value in
the spreadsheet under t. For the uncertainty in this time (δt), use the
standard deviation (denoted by s) from your reaction time which you
measured in Lab #2 Reaction Time. (If you don’t have your reaction
time value then ask your TA for a reasonable value.)

6. Calculate the linear acceleration of the falling mass (M) using Eq. 8.8.

Use δa = a
(

2δtt + δh
h

)
to calculate its uncertainty.

7. Use Eq. 8.11 to calculate the tension in the string (T ) and δT =

T
(
δM
M + δa

g−a

)
to calculate its uncertainty.

8. Use Eq. 8.6 and the given radius of R = 1.27± 0.01 cm for the central
pulley to calculate the angular acceleration of the rotating apparatus.

Use δα = α
(
δa
a + δR

R

)
to calculate its uncertainty.

9. Use Eq. 8.10 to calculate the torque on the rotating apparatus and

use δτ = τ
(
δT
T + δR

R

)
to calculate its uncertainty. (Note: in this

equation the Greek letter τ is the torque and T is the tension in the
string.)

10. Use Eq. 8.2 to calculate the moment of inertia I of the rotating

apparatus. Its uncertainty is given by δI = I
(
δτ
τ + δα

α

)
.

11. Calculate r2 and its uncertainty, δr2 = 2rδr.

12. Repeat the above steps for 2 additional, non-zero values of r. Make
sure that the values of r for each trial differ by at least 2 cm.
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8. Rotational Motion: Moment of Inertia

13. For the last trial you will place the two cylinders at r = 0. To do this,
you will use the vertical bar on the support (see Fig. 8.6). When you
place the cylinders on the vertical bar, make sure they are oriented
the same way as in your previous trials, i.e. with the axes of the two
cylinders perpendicular to the vertical bar. As before, make sure to
tighten the thumbscrews on the cylinders. Follow the above procedure
to calculate the moment of inertia of the body with the two cylinders
at r = 0. Include this data in your data table.

Figure 8.6: View of apparatus with 2 masses at radius r = 0.

14. Transfer your data into KaleidaGraph and make a plot of I vs. r2.
Your data points should have both horizontal and vertical error bars.
Fit your data with a best fit line making sure to display the fit values
for slope and y-intercept with their uncertainties.

8.8 Checklist

1. Excel spreadsheets (both data and formula views)

2. Plot of I vs. r2 with both horizontal and vertical error bars, a best fit
line and observations.

3. Answers to questions
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8.9. Questions

8.9 Questions

1. The moment of inertia of a body depends not only on its mass, but also on
how the mass is distributed. Does your data support this? Why or why
not?

2. In your plot of I vs. r2, why did you use r2 and not r in the plot? What
are the units of the slope of I vs. r2?
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8. Rotational Motion: Moment of Inertia

3. Discuss the consistency of the slope of the plot of I vs. r2 with the value
you measured for (m1 + m2). If they are not consistent, suggest possible
reasons why. The uncertainty in your measured mass is given by:
δ(m1 +m2) = δ(m1) + δ(m2)

4. In the procedure, you were given that R = 1.27± 0.01 cm. Using only the
experimental apparatus and a meter stick, how would you verify this radius
with an uncertainty of less than or equal to 0.01 cm?
(Hint: You cannot get this uncertainty by holding the meter stick next to
the axle and measuring the diameter. Also note that the string is a part of
the apparatus.)
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