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Chapter 1 : SECOND QUANTIZATION
1. The Schroedinger equation in first and 

second quantization
a. Bosons
b. Many particle Hilbert space
c. Fermions

2. Fields
3. Example : Degenerate electron gas

Next topic: 
QUANTUM FIELD THEORY AND MANY 
PARTICLE SYSTEMS

Think of many applications ...

References:
Fetter and Walecka,
Quantum Theory of Many-Particle 
Systems (famous primary text; not 
obsolete, but old fashioned)

E. G. Harris,
A Pedestrian Approach to Quantum Field 
Theory (pedestrian; somewhat obsolete)

We don’t have time to cover the field at 
the depth of Fetter and Walecka.
We’ll study some essential ideas:
Chapters 1, 3, 4 ?
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SECTION 1 : THE SCHROEDINGER EQUATION IN FIRST AND 
SECOND QUANTIZATION

Start with 

     H = ∑N
k=1 Tk  + ½ ∑’ Nk,l=1 V(xk,xl) ;

Note ∑’ : the prime means l ≠ k.

N particles; interacting with each other by a 2-
particle interaction V(x1,x2).

The essential goal of quantum mechanics is to solve 
the Schroedinger equation,

iħ ∂Ψ / ∂t = H Ψ
where

Ψ = Ψ(x1 , x2 , x3 , … , xN ; t ) .
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The first quantized theory

Notations
● .Index k labels one of the N particles; 

the set of k values is
{k} = { 1 2 3 … k … N}.

● .xk is a complete set of coordinates 
for particle k; for example, for an 
electron, xk = ( xk , yk , zk , ξk ).

                                     Cartesian coords.;    spin coord.;
                                     ∈ (0,L)                            ∈ (1,−1)  

Introduce a complete set of time-independent 
single-particle wave functions

To Solve:     iħ ∂Ψ/  ∂t = H  Ψ
where   Ψ = Ψ(x

1
 x

2
 x

3
 … x

k
 … x

N
)
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Completeness: We can expand the N-
particle wave function as a product of 
single-particle wave functions __

By the orthonormality of the
s.-p. states __

Interpretation: |C({E};t)|2 =
the probability that the particles have 
quantum numbers { E1 E2 … Ek … EN }

Normalization relations

The Schroedinger equation for C({E};t)
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So far, this is simple.

But now comes the hard part:

Assume that the N particles are 
identical particles. 

 Identical particles are 
indistinguishable.

I.e., the N-body wave function cannot 
tell which particle (k) has a particular 
set of quantum numbers (Ei ).

∴ Ψ➕Ψ   must be invariant under any 
interchange of coordinates, xk ↔ xl .

1a. BOSONS

Ψ(x1 … xN ; t ) must be symmetric  with 
respect to interchange of any two 
coordinates;      i.e.,

Ψ( … xk … xl … ; t ) = + Ψ( … xl … xk … ; t )

Then also,

C( … Ei  … Ej … ; t ) = + C( … Ej … Ei … ; t )

Understand the notation:
k, l, …  are particle labels; all are different;
k  ∈  {1, 2, 3, …, N} ;
i, j, … = s.-p. state labels; some might be the 
same;  i  ∈  {1, 2, 3, … , ∞} ;
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The space of occupation numbers
(Fock space)

C( E1 , E2 , E3 , … , EN ) could depend on 3N 
quantum numbers (ignore spin; set spin = 
0 since they are bosons);

e.g., { p1 , p2 , p3 , … , pN )

where pk = (pkx, pky, pkz)  .

But C could depend on as few as 3 
quantum numbers,

{ p1 , p1 , p1 , … , p1 }      for bosons!

i.e., all the particles have the same 
quantum numbers.

In fact, by the exchange symmetry of the 
N-particle wave function, C is completely 
determined by the list of occupation 
numbers.

“standard order”

“standard order”
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Imagine that all possible s.p. states can be 
listed in some order,
{ E1 , E2 , E3 , … , Ek , …  … … }

“standard order”
(this is an infinite  list).

Define occupation numbers :
ni = the number of particles in the state |Ei>.

So, for a basis state Ψ, the set of occupation 
numbers is
{ n1, n2 , n3 , … , ni , …  … … }

For each i ,   ni ∈ { 0, 1, 2, 3, … , N }  ;
and there is a crucial restriction ,

∑ ni   =   N .
  i .
Then C( E1 , E2 , E3 , … , EN )  =   Ĉ(n1, n2, n3, …)
because different orderings are equal.
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C( {E} ;  t )  is symmetric w.r.t. any 
exchanges in  the list
{E} ≡ {E1, E2, E3, … , EN}

Ĉ( {n} ;  t )  has no symmetry property;
{n} is in the standard order;
and there is a restriction, ∑ ni = N .

    i                   
The interpretation of Ĉ( {n} ;  t )
We have
Ĉ(n1, n2, n3, …) = C(E1 , E2 , E3 , … , EN) ;
the right-hand side is invariant w.r.t. all 
permutations of the list
{E1 , E2 , E3 , … , EN} ;

“symmetry of the wavefunction”

i

Probabilities and normalizations
We have

But  ∑ | Ĉ ( {n} , t ) |2  is not 1.
          {n} 

So Ĉ is not a probability amplitude.

The probability amplitude for occupation 
numbers {n} is

f
N
( {n} , t } = Sqrt[ N!/  ∏ ni! ] Ĉ({n},t)
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The probability amplitude for the list of occupation 
numbers is

fN ( {n}  ; t ) =   ( N!  /  ∏ ni! )
½     Ĉ ( {n}  ; t ) .

                                                     i

N! / (∏ ni!)   = the number of distinguishable 
                i permutations of {E} when the list

of occupation numbers is {n}.

Normalization:

∑’ | fN ( {n}  ; t ) | 2  =  1
       {n} (∑’ : prime implies

the restriction ∑ni=N)



Example.  Consider N = 2.

❖ Both in the same state ;
➢ N! / (∏ ni!) = 2! / 2! = 1

➢ Ψ (x1,x2)  =   ψα(x1) ψα(x2)

➢ C(Eα,Eα) = 1

❖ Two in different states ;
➢ N! / (∏ ni!) = 2! / (1! 1!) = 2

➢ Ψ (x1,x2)  =   

1/√2 [ ψα(x1) ψβ(x2) + ψβ(x1) ψα(x2) ]

➢ C(Eα,Eβ) = 1/√2  ,  C(Eβ,Eα) = 1/√2

➢ Ĉ({1,1}) = 1/√2   ,    f2 ( {1,1} ) = 1

Example. Consider N=3.

❖ All three in the same state ;

➢ ψα(x1) ψα(x2) ψα(x3)

➢ f3 ( {3,0,0,0....} )  = 1

❖ All three in different states ;

1/√6  [  

ψα(x
1
) ψβ(x

2
) ψγ(x

3
)  + ψγ(x

1
)ψα(x

2
) ψβ(x

3
) 

+ ψβ(x
1
) ψγ(x

2
) ψα(x

3
) + ψβ(x

1
) ψα(x

2
) ψγ(x

3
) 

+ ψγ(x
1
) ψβ(x

2
) ψα(x

3
) + ψα(x

1
) ψγ(x

2
) ψβ(x

3
) 

 ]

f
3
 ( {1,1,1,0,0,0,0….} ) = 1
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The most general state with N particles (bosons!) :

● .The state would be a superposition of states
with different occupation numbers;

● .but each component would have to have   ∑ ni = N .

● .Thus, the basis states  for the N-particle Hilbert space
are

ΦN( {n}  ; {x} ) = 

Sqrt[ ∏ ni!  /N! ]   ∑  ψE1(x1) ψE2(x2) … ψEN(xN)
                                 

P
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Homework due Friday, February 5 …

Problem 11.

Three identical bosons are in a harmonic oscillator potential. The total energy 
is 9/2 ħω . What is the most that you can say about the 3-particle wave 
function, Ψ( x

1
 , x

2
 , x

3
 ).

Problem 12.

Consider two identical bosons (spin = 0 ) moving in free space, and interacting 
with each other. Approximate the 2-particle wave function by products of free 
waves with momenta p

1
 and p

2
.

(a ) Calculate the expectation value of the two-body potential V(x
1
 , x

2
).

(b) Now suppose V(x
1
,x

2
) = U(x

1
-x

2
). Express the result of (a) in terms of the 

Fourier transform of U(r).


