Next topic: QUANTUM FIELD THEORY AND MANY PARTICLE SYSTEMS

Think of many applications ...

References:

Fetter and Walecka, Quantum Theory of Many-Particle Systems (famous primary text; not obsolete, but old fashioned)

E. G. Harris,
A Pedestrian Approach to Quantum Field
Theory (pedestrian; somewhat obsolete)

We don't have time to cover the field at the depth of Fetter and Walecka. We'll study some essential ideas: Chapters 1, 3, 4?

Chapter 1: SECOND QUANTIZATION

- 1. The Schroedinger equation in first and second quantization
 - a. Bosons
 - b. Many particle Hilbert space
 - c. Fermions
- 2. Fields
- 3. Example : Degenerate electron gas

SECTION 1 : THE SCHROEDINGER EQUATION IN FIRST AND SECOND QUANTIZATION

Start with

$$H = \sum_{k=1}^{N} T_k + \frac{1}{2} \sum_{k,l=1}^{N} V(x_k, x_l);$$

Note Σ' : the prime means $l \neq k$.

N particles; interacting with each other by a 2-particle interaction $V(x_1,x_2)$.

The essential goal of quantum mechanics is to solve the Schroedinger equation,

$$i\hbar \partial \Psi / \partial t = H \Psi$$

where

$$\Psi = \Psi(x_1, x_2, x_3, ..., x_N; t)$$
.

The first quantized theory

$$H = \sum_{k=1}^{N} T_k + \frac{1}{2} \sum_{k,l=1}^{N} V(x_k, x_k)$$

$$T_k = -\frac{h^2}{2m} \nabla_k^2 + U(x_k) \quad \text{"one body operator"}$$

$$V(x_k, x_k) = \text{interaction energy "two-body operator"}$$

Notations

- .Index k labels one of the N particles; the set of k values is $\{k\} = \{123 ... k ... N\}.$
- x_{ν} is a complete set of coordinates for particle k; for example, for an electron, $\mathbf{x}_{k} = (\mathbf{x}_{k}, \mathbf{y}_{k}, \mathbf{z}_{k}, \boldsymbol{\zeta}_{k})$. Cartesian coords.; spin coord.; € (1.-1)

 $\in (0,L)$

To Solve: iħ $\partial \Psi / \partial t = H \Psi$ where $\Psi = \Psi(x_1 x_2 x_3 \dots x_k \dots x_N)$

Introduce a complete set of time-independent single-particle wave functions

Single - particle states

$$Y_{E}(x) \quad \begin{cases}
x = coordinates \\
E = quentum numbers
\end{cases}$$

For example, for an electron L a box,

 $E = (p_{x}, p_{y}, p_{z}, S_{z})$
 $Y_{E}(x) = \sqrt{S_{z}} e^{i\vec{F}\cdot\vec{x}/\hbar} u$
 $\vec{F} = \frac{2\pi}{L} \vec{\pi} \quad (P.B.C.) \quad \text{and} \quad u = (6) \quad \text{or} \quad (7)$

<u>Completeness:</u> We can expand the N-particle wave function as a product of single-particle wave functions ___

$$\Psi(x_{i,j}, x_{2}, x_{3}, \dots, x_{N}; t)$$

$$= \sum_{E_{i}'} \sum_{E_{i}'} \dots \sum_{E_{N}'} C(E_{i}' E_{2}' \dots E_{N}'; t)$$

$$\chi \prod_{k=1}^{N} \psi_{E_{k}'}(x_{k})$$

$$Cr,$$

$$\Psi(\{x\}; t) = \sum_{\{E'\}} C(\{\{E'\}; t) \prod_{k=1}^{N} \psi_{E_{k}'}(x_{k})$$

By the orthonormality of the s.-p. states ___

$$C'(\{\xi\xi\};t) = \int \prod_{k=1}^{N} \psi_{\xi_{k}}^{\dagger}(x_{k}) \widetilde{\Psi}(\{x\};t) d\tau_{k}$$
$$d\tau_{k} = d^{2}x_{k} \sum_{\xi_{k}}$$

Interpretation: $|C(\{E\};t)|^2 =$ the probability that the particles have quantum numbers $\{E_1 E_2 ... E_k ... E_N\}$

Normalization relations

$$\int \Phi^{\dagger} \Psi \prod_{k=1}^{N} d\tau_{k} = 1$$

$$\sum_{\{E\}} \left| C(\{E\};t) \right|^{2} = 1$$

The Schroedinger equation for C({E};t)

it
$$\frac{3}{3t}C = \sum_{k=1}^{N} \sum_{w} \langle E_{k} | + | w \rangle C(E_{j} ... w ... E_{N}; t)$$

$$+ \frac{1}{2} \sum_{k,l=1}^{N'} \sum_{w} \sum_{w'} \langle E_{k} E_{k} | v | w w' \rangle$$

$$C(E_{j} ... w ... w' ... E_{N}; t)$$

$$position k$$

$$position k$$

$$position k$$

$$position k$$

$$\langle E_k | T | w \rangle = \alpha$$
 single purhale matrix element
 $\langle E_k E_k | V | wwi \rangle = \alpha 2$ -particle matrix element

So far, this is simple.

But now comes the hard part:

Assume that the N particles are identical particles.

Identical particles are indistinguishable.

I.e., the N-body wave function cannot tell which particle (k) has a particular set of quantum numbers (E_i) .

 $: \Psi^+\Psi$ must be invariant under any interchange of coordinates, $x_{\nu} \leftrightarrow x_{\nu}$.

1a. BOSONS

Then also.

 $\Psi(x_1 ... x_N; t)$ must be *symmetric* with respect to interchange of any two coordinates; i.e.,

 $\Psi(... x_k... x_l...;t) = + \Psi(... x_l... x_k...;t)$

 $C(...E_{i}...E_{i}...;t) = + C(...E_{i}...E_{i}...;t)$

Understand the notation:

k, l, ... are particle labels; all are different;

 $k \in \{1, 2, 3, ..., N\}$; i, j, ... = s.-p. state labels; some might be the same; $i \in \{1, 2, 3, ..., \infty\}$; The space of occupation numbers (Fock space)

 $C(E_1, E_2, E_3, ..., E_N)$ could depend on 3N quantum numbers (ignore spin; set spin = 0 since they are bosons);

e.g., $\{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3, \dots, \mathbf{p}_N\}$

where $\mathbf{p}_{\mathbf{k}} = (\mathbf{p}_{\mathbf{k}\mathbf{x}'}, \mathbf{p}_{\mathbf{k}\mathbf{y}'}, \mathbf{p}_{\mathbf{k}\mathbf{z}})$.

But C could depend on as few as 3 quantum numbers,

 $\{\mathbf{p}_1, \mathbf{p}_1, \mathbf{p}_1, \dots, \mathbf{p}_1\}$ for bosons!

i.e., all the particles have the same quantum numbers.

In fact, by the exchange symmetry of the N-particle wave function, *C* is completely determined by the list of occupation numbers.

Imagine that all possible s.p. states can be listed in some order, $\{E_1, E_2, E_3, \dots, E_k, \dots \dots \}$ "standard order" (this is an *infinite* list).

Define occupation numbers : n_i = the number of particles in the state $|E_i>$.

So, for a *basis state* Ψ , the set of occupation

numbers is $\{n_1, n_2, n_3, ..., n_i,\}$ For each $i, n_i \in \{0, 1, 2, 3, ..., N\}$;

and there is a crucial restriction, $\sum_{i} n_{i} = N$

Then $C(E_1, E_2, E_3, ..., E_N) = \hat{C}(n_1, n_2, n_3, ...)$ because different orderings are equal.

C({E}; t) is symmetric w.r.t. any
exchanges in the list
$$\{E\} \equiv \{E_1, E_2, E_3, ..., E_N\}$$

 $\hat{C}(\{n\}; t)$ has no symmetry property; $\{n\}$ is in the standard order; and there is a restriction, $\sum_{i} n_{i} = N$.

The interpretation of $\hat{\mathbf{C}}(\{n\}; t)$

We have

$$\hat{\mathbf{C}}(\mathbf{n}_1, \mathbf{n}_2, \mathbf{n}_3, ...) = \mathbf{C}(\mathbf{E}_1, \mathbf{E}_2, \mathbf{E}_3, ..., \mathbf{E}_N);$$

the right-hand side is invariant w.r.t. all permutations of the list

$$\{E_1, E_2, E_3, ..., E_N\};$$
"symmetry of the wavefunction"

<u>Probabilities and normalizations</u>

We have

$$\int \Phi^{\dagger} \Psi \prod_{k=1}^{N} d\tau_{k} = 1$$

$$\sum_{\{\epsilon\}} \left| c(\{\epsilon\};t) \right|^{2} = 1$$

But
$$\sum_{\{n\}} |\hat{C}(\{n\}, t)|^2$$
 is not 1.

So Ĉ is not a probability amplitude.

The probability amplitude for occupation numbers {n} is

$$f_N(\{n\}, t\} = Sqrt[N!/ \prod n_i!] \hat{C}(\{n\}, t)$$

The probability amplitude for the list of occupation numbers is

$$f_{N}(\{n\};t) = (N! / \prod_{i} n_{i}!)^{1/2} \hat{C}(\{n\};t).$$

N! /
$$(\prod n_i!)$$
 = the number of distinguishable
i permutations of $\{E\}$ when the list
of occupation numbers is $\{n\}$.

Normalization:

$$\Sigma' \mid f_N (\{n\}; t) \mid^2 = 1$$

{n} $(\Sigma': prime implies the restriction $\Sigma n_i = N)$$

Example. Consider N = 2.

- Both in the same state;
 - $N! / (\prod n_i!) = 2! / 2! = 1$
- \rightarrow $\Psi(x_1, x_2) = \psi_\alpha(x_1) \psi_\alpha(x_2)$
- \rightarrow C(E_a,E_a) = 1

*

- ❖ Two in different states;
 - \rightarrow N! / ($\prod n_i!$) = 2! / (1! 1!) = 2
 - $\Rightarrow \Psi(x_1,x_2) =$
 - Ψ (x₁, x₂) 1/√2 [ψ_α(x₁) ψ_β(x₂) + ψ_β(x₁) ψ_α(x₂)]
 - $ightharpoonup C(E_{g}, E_{g}) = 1/\sqrt{2} , C(E_{g}, E_{g}) = 1/\sqrt{2}$
 - \Rightarrow $\hat{C}(\{1,1\}) = 1/\sqrt{2}$, $f_2(\{1,1\}) = 1$

Example. Consider N=3.

- All three in the same state;
 - $> \psi_{\alpha}(\mathbf{x}_1) \psi_{\alpha}(\mathbf{x}_2) \psi_{\alpha}(\mathbf{x}_3)$
 - \rightarrow $f_3({3,0,0,0...}) = 1$
 - All three in different states;

- 1/ $\sqrt{6}$ [$\Psi_{\alpha}(x_1) \Psi_{\beta}(x_2) \Psi_{\gamma}(x_3) + \Psi_{\gamma}(x_1) \Psi_{\alpha}(x_2) \Psi_{\beta}(x_3)$ $+ \Psi_{\beta}(x_1) \Psi_{\gamma}(x_2) \Psi_{\alpha}(x_3) + \Psi_{\beta}(x_1) \Psi_{\alpha}(x_2) \Psi_{\gamma}(x_3)$ $+ \Psi_{\beta}(x_1) \Psi_{\gamma}(x_2) \Psi_{\gamma}(x_3) + \Psi_{\beta}(x_1) \Psi_{\gamma}(x_2) \Psi_{\gamma}(x_3)$
 - + $\psi_{\gamma}(x_1) \psi_{\beta}(x_2) \psi_{\alpha}(x_3) + \psi_{\alpha}(x_1) \psi_{\gamma}(x_2) \psi_{\beta}(x_3)$
- $f_3 (\{1,1,1,0,0,0,0,\dots\}) = 1$

The most general state with N particles (bosons!):

- The state would be a superposition of states with different occupation numbers;
- but each component would have to have $\sum n_i = N$.
- Thus, the basis states for the N-particle Hilbert space are

```
\Phi_{N}(\{n\}; \{x\}) =
Sqrt[\prod n_{i}! /N!] \sum \psi_{E_{1}}(x_{1}) \psi_{E_{2}}(x_{2}) ... \psi_{E_{N}}(x_{N})
```

Homework due Friday, February 5 ...

Problem 11.

Three identical bosons are in a harmonic oscillator potential. The total energy is $9/2 \hbar \omega$. What is the most that you can say about the 3-particle wave function, $\Psi(x_1, x_2, x_3)$.

Problem 12.

Consider two identical bosons (spin = 0) moving in free space, and interacting with each other. Approximate the 2-particle wave function by products of free waves with momenta $\mathbf{p_1}$ and $\mathbf{p_2}$.

- (a) Calculate the expectation value of the two-body potential $V(\mathbf{x}_1, \mathbf{x}_2)$.
- (b) Now suppose $V(\mathbf{x_1}, \mathbf{x_2}) = U(\mathbf{x_1} \mathbf{x_2})$. Express the result of (a) in terms of the Fourier transform of $U(\mathbf{r})$.