CHAPTER 1. SECOND QUANTIZATION
Review of Section 1:
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In Chapter 1, FSW explain the basic theory:

4 Start from the many-particle
Schroedinger equation (“1st
quantized”) ;

Introduce creation and annihilation
operators for bosons and fermions
(“2nd quantized”) ;

1 Section 2: Introduce the field operator
¥_(x).

In Chapter 3, F6W will explain how to use
this theory to do calculations for many-
particle systems.

Today: Summarize the general principles of
NRQFT.




Section 2:

® define the field operator for these “particles”; (in fact,
we already did this)

® figure out the defining equations of the field; (i.e.,
the commutation relations)

® and, what is the Hamiltonian?
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The quantum field

m The field operator ¥ (x) annihilates a
particle at position x.

The adjoint field operator ‘Pu"‘(x) creates a
particle at x.

m The actions of ¥ x) and ‘Pa"‘(x) in the
Hilbert space are based on postulated
commutation relations (for bosons) or
anti-commutation relations (for
fermions).

For spin 0 bosons,
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For spin 2 fermions,
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In Chapter 3 we’ll introduce “particles and holes”;
then W can annihilate a particle or create a hole; and
W can create a particle or annihilate a hole.

In relativistic QFT, W can annihilate an electron or
create a positron.




m The Hamiltonian operator for spin-%
particles is
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If ¥(x) were the Schroedinger wave function of
a particle then the first term would be the
expectation value of the kinetic energy;

the second term would be the expectation value
of Vin a two-particle wave function;

but ¥(x) is not the Schroedinger wave function
of a particle—it is the quantum field operator.




The theory based on these postulates (NRQFT)
implies the equations of N-particle
Schroedinger wave mechanics.

Define the Schroedinger wave function
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and show that this obeys the time-dependent
Schroedinger equation.




m [n field theory, the number density
operator is

n(x) = q{’:(i'} "IL,( (%)

where the sum over o from -1 to +1 is implied.
Repeated spin indices are summed by convention.

and the total number operator is
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A crucial theorem of NRQFT

[H,N]=0

Proof (for a fermion field)
[H,N]=[T,N]+[V,N]

Rewrite in terms of field anticommutators
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Consider N=0

[H,N]=0 In NRQFT, the state with no particles is just
¢ empty space. (RQFT is different!)

Corollary #1
The energy eigenstates are also particle

number eigenstates. et AT

P'roof: Commuting operators have common An energy eigenstate with N =1 and energy E is |
eigenstates. El>.

|]0> has H|0>=0 and N|0>=0.

Corollary #2 Define the Schroedinger wave function for this

. . state,
The total number of particles is constant 0.0 =<0| W (x) |[E1>.

in time.
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Consider N =2

An energy eigenstate with N = 2 and
energy Eis |E2>.

Define the Schroedinger wave function
for this state,

Pot a2 (xl 'xz) =<0 | Lp(ﬂ(xl) Lpaz(xz) | E2>

Theorem 1.

P o(XpX,) 1s antisymmetric under
exchange of particle coordinates.
(obvious because {p,p}=0.)

Theorem 2.
(qu az(xl'xz) ObeYS the 2-particle
Schroedinger equation.

Consider arbitrary N
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Field operators and wave functions

What is an electron?
Is it a particle or a wave?

We could ask the same questions for
photons. In electromagnetism, the field
A(x) is a quantum operator, which
annihilates and creates photons.

The answer for electrons is the same,
from quantum field theory:

There is an electron field W(x), and the
electron is the quantum* of the field.

W(x) annihilates an electron at x;

pt (x) createsan electron at x.

OK; then what is the “wave function”?
Dirac provided the answer.

For a single particle in the state with
quantum numbers E, the wave function is

(pE(x) = <vacuum | Y(x) | E>

where |E> = CElli | vacuum > ;

¢, =5 W), 00dx.

All of this is just formal theory.

What can we actually calculate from it?

*quantum = single excitation




Homework due Friday, Feb. 5

Problem 14.

Prove that [V, N] = 0 where V is the two-particle
interaction potential for identical fermions and N
is the total number operator.

Problem 15.
Let P(x,t) be the field operator for a spin-%

fermion, in the Heisenberg picture. Derive the
field equation for ¥(x,t), in the form

ih 0¥ / ot = F[¥] , where F[ ¥] is a functional—
which may involve derivatives and integrals.
Simplify the result as much as possible.
[[Assume that T(x) = - h*V? /2m and that V(x ,x )
is spin independent.]]




