
Finishing Chapter 1 : SECOND QUANTIZATION

 The electron gas.

Here is a classic problem in condensed matter physics. 
How does electric current occur in a metal?
Some electrons --- the “conduction electrons”--- are 
free to move arbitrary distances in the material. They 
make up the current. The conduction electrons are an 
example of a dense plasma.

▶ Theories before 1950 relied on the independent 
electron model, which is not a very good 
approximation. (earliest: Drude model)

▶ Around 1950 people began to use quantum many-
body theory and quantum field theory to analyze the 
electron system including ee interactions. The 
analytical calculations rely on perturbation theory.

▶ Recent approaches are based on quantum field 
theory, but use heavily computational methods: e.g., 
the quantum Monte Carlo method; the density 
functional method.

3.  THE DEGENERATE ELECTRON GAS

Now it is time to study an example of the general 
formalism defined in Sections 1 and 2.

The physical model

The model has two components:

/i/ N electrons confined in a volume Ω      ( ⇨ ∞ ) ;
the volume of interest is 0 < x < L , 0 < y < L and 0 < z < L; 
wave functions obey periodic boundary conditions;
Ω = L3 .

/ii/ a uniform continuum of positive charge, such that the 
total charge is 0; its density is eN/Ω; it is not particulate. 

Search Google for “ Jellium “ .

(The positive jelly is necessary to keep the 
electrons bound in the metal.)
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The first quantized Hamiltonian is

H = Hel. + H b. + Hel-b.

where

The convergence factor, μ.
Eventually we’ll set μ = 0.  But we’ll wait until the end 
of the the calculations to take the limit μ → 0 ,
because there will be intermediate results that are 
singular in the limit. The singularities will cancel before 
we take the limit.

The thermodynamic limit. ( TD limit )
This is the limit N  → ∞, Ω → ∞, with n = N/Ω constant 
and finite. As we go along we’ll make approximations 
that are valid in this limit.

The background contributions

Now, Hb. is just a c-number ;  i.e., it has no 
quantum operators.
We can calculate it in the TD limit
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Hel-b. appears to be a one-body operator 
(because it appears to depend on rk) but in fact 
it is also a c-number in the TD limit: 

In the TD limit, we can replace n(x) = N/Ω ; and 
change the variable of integration from x to ξ = 
x − rk ; there is translation invariance ;

---still singular as mu -> 0, but this is negative 
(i.e., binding)..

The second quantized electron Hamiltonian
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The electron-electron interaction

Comments.
(1 ) Translation invariance ⇒
total momentum is conserved
(2 ) The electrostatic interaction is independent of spin.

Thus the second quantized Hamiltonian is

The background contribution is negative, which provides 
binding energy to hold the metal together. But what about the 
positive terms, like the electron kinetic energy and ee 
repulsion?

♰The 3D Fourier transform of e–μr/r is 4π / (q2+ μ2) .

♰
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The DIRECT TERM (i.e, q = 0)

① exactly cancels the background part
② is negligible in the TD limit for E/N; 
because this term is only finite as Ω→∞

Now we’ll cancel the c-number terms
Momentum is conserved ; δKr(k1+k2 , k3+k4)
Make this change of variables:
 
 k1= k + q and  k3 = k
 k2= p − q and  k4 = p

Note: The momentum transfer is 
ħ (k1 − k3 ) = ħq . 
So by momentum conservation we can 
replace the sum over k1 k2 k3 k4 by just k p q .
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The EXCHANGE TERM (i.e., q ≠ 0 ) is 
nonsingular as μ⟶0, so, set μ = 0.

⇒

A bit of dimensional analysis shows that the 
kinetic energy >> interaction energy for a 
dense plasma.
∴ We can treat V in perturbation theory.
(We’ll verify this at the end.)
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Perturbation theory

The unperturbed problem is just an ideal Fermi gas. The 
ground state, called the “degenerate Fermi gas”, has filled 
energy levels up to the Fermi energy. (Pauli exclusion 
principle) fill the energy levels up to the Fermi energy;
called the “degenerate Fermi gas”. Define k

Fermi
  = max |k|
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It’s useful to use the Bohr radius a0 and Rydberg 
energy Ry(♰)
a0 = ħ2/(me2)     and    Ry=me4/(2ħ2) = ħ2 /(2ma0

2).

Define rs = r0/a0; then
kF = (9π/4)1 /3 1/a0 rs−1    and    EF = (9π/4)2 /3 Ry rs−2

E(0) /N = 0.6 EF = 2.21 Ry rs−2 

In this approximation, the electrons are unbound, 
because E(0) > 0.

(♰) this problem has nothing to do with the hydrogen 
atom; a0 and Ry are just useful parameters.
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The effect of ee-interactions, in first-order 
perturbation theory.
We’ll calculate the additional contribution to the 
ground state energy,

E(1)
  = < F | H1 | F >  ;
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Using the result of the homework problem,

E(1) = − 4π e2  [Ω /(2π)6 ]  4π2 kF
4

Here Ω = (4/3) π r0
3 N  and   kF = (9π/4)1 /3 r0

−1

so

E(1) /N = 

The ground state energy per particle (in 
first-order perturbation theory) is

   E        E(0) + E(1)                2.21       0.916

   N           N                          rs2             rs
─ ＝ ─────  ＝ Ry [ ────  –  ────  ]

Now we have an integral to calculate.

J ( kF ) = 
     ∫   d3q / q2 ∫  d3k 
     Θ( kF − k ) Θ( kF −|k + q|)

Let
M = ∫  d3k  Θ( kF − k ) Θ( kF − |k + q|) ;
M = the volume of intersection of two spheres;
show that   M = (4π kF3 /3) (1 – x)2  (1 + x/2) ,
where x = q /(2 kF ).

Then calculate J =  ∫   d3q / q2    M .

That’s homework problem 16.
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The exchange energy is negative, and the minimum energy 
is negative. The minimum energy is negative, so the 
jellium system is bound.



(2.21/rs2 -0.916/rs ) Ry

∎ The Rayleigh Ritz variational principle 
implies that

Eexact   ≤   <F| H |F> = E(0) + E(1) ;

so the exact ground state energy is negative.

∎ The jellium system is bound because of the 
exchange energy.

Comments in F.&W.

。The calculated jellium ground state has
rs = 4.83 and E/N = −1.29 eV;

compare metallic sodium,
rs = 3.96 and E/N = −1.13 eV. (experiment)

。Calculation of the pressure of the electron gas

。Calculation of the bulk modulus 

。The “Wigner solid” has

E/N = Ry ( −1.79 /rs + 2.66 /rs 3/2  )

in the limit of large rs.
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Homework Problems due Friday February 12

Problem 16.
The first-order calculation of the ee-interaction energy in jellium 
gives a result that depends on an integral, J, defined by

     J ( kF ) = ∫   d3q / q2  ∫  d3k  Θ( kF − k ) Θ( kF − |k + q| )

Calculate the integral. (Some hints were given in the lecture.)

Problem 17.
Use computer graphics to reproduce the figure below, which is 
taken from Fetter and Walecka.


