
Review some results from the last lecture...

First we assumed that there is no 
Bose-Einstein (BE) condensate at 
temperature T.
Then ...

N(k) = 

where E(k) = ħ2 k2 /(2m) ;

and

Ntot =  

But then we found that there is no 
solution for T < TC where

ν  = 

So for T < TC there must be a significant 
fraction of particles in the ground state 
(i.e.,  k = 0 ); 

Ntot = N(0) + 

That is the IDEAL Bose-Einstein gas.
Now include the effects of HI , to 
estimate the excitation energies.

1

THE NEARLY DEGENERATE IDEAL BOSE-EINSTEIN GAS



We start again with

H = ∑k ħ2 k2 /(2m)  bk
☨bk 

    + (1/Ω) ∑k1, k2, q v(q)  bk1+q
☨ bk2−q

☨ bk2 bk1

and make some approximations.

∎   b0 ≈ b☨ ≈ √ N ;

∎   neglect terms cubic or quartic
in bk and bk

☨  for k ≠ 0 ;

∎  b0
2 + ∑k bk

☨ bk = N ;     so b
0

4 = N2 - 2N ∑b☨b

∎  for simplicity,
write v(q) = v0     (constant) .

V ≈ N2 v0/Ω

   + Nv0/Ω ∑q ( bq
☨ b−q

☨ + bq b−q + 2 b☨ bq )

n = N/Ω 
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Consider very low T  ;  i.e.,  T << TC

Remember this: If many particles are in 
the same quantum state then the field 
behaves almost classically.

We have [b0 , b0
☨  ] =  b0 b0

☨ − b0
☨ b0 = 1 ;

but this is << the number operator b0
☨ b0 ,

which is of order Ntot .

So we can approximate
b0

☨ b0 ≈ N and      b0 ≈ b0
☨ ≈ √ N  ;

in other words, we can approximate these 
operators by c-numbers.

And what about the operators bk and bk
☨  

with k ≠ 0 ?
As T approaches 0, we can neglect higher 
order products of bk and bk

☨ .



The inverse transformation is 

bk = ( ak − Lk a−k
☨   ) /M

bk
☨ = ( ak

☨  − Lk a−k   ) /M

Now rewrite the Hamiltonian in terms of  
ak  and  ak☨  .

H = ∑k ħ2 k2 /(2m)  bk
☨ bk  +  Nnv0 

+ nv0 ∑k ( bk
☨ b−k

☨  + bk b−k + 2 bk
☨ bk )

There will be terms proportional to ak a−k 
and ak

☨  a−k
☨  . Make their coefficients 0 by 

a suitable choice of Lk. Then the remaining 
terms will be proportional to ak

☨ ak  ...
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The canonical transformation
(Bogoliubov, 1947)

Let Lk be a c-number, to be determined.     
Define

M = √ 1 − Lk
2

ak = ( bk + Lk b−k
☨  ) /M

ak
☨ = ( bk

☨  + Lk b−k   ) /M

Note that the commutation relations are 
invariant, 

[ ak  , ak’
☨ ] = δk, k’    ;

[ ak  ,  ak’ ] = 0  and [ ak
☨  , ak

☨ ] = 0  ;

i.e.,  the same as for the bk and bk
☨  .



After several pages of algebra,

the result is ___
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Quasi-particles

The final hamiltonian (H) describes a 
theory of  noninteracting “particles” with 
single “particle” energies = ε(k) .

Quasi-particles

●  For long wavelengths,
(k = 2π / λ ; ∴ long wavelengths ⇒ small k)

ε(k) ≈  cs  ℏk (units?)

cs   =   √ 2 nv0 / m                
= the speed of sound

These quantized waves are called 
phonons ( a “collective motion”) .

●  For short wavelengths, ( large k )

ε(k)  ≈  ℏ2k2 /2m

so these approximate single atoms w/ w.v. = k



Excitations of the BE condensate

Superfluidity of He-4
Consider a large object moving slowly through 
the superfluid. Although there is no true energy 
gap, excitation of phonons is negligible;
the density of phonon states is small down to k 
= 0.

Superfluid He-4
Landau proposed that the spectrum of 
excitations in the superfluid phase of He-
4 looks like this:

Landau and Lifschitz (19??);
Onsager (1947);
Feynman (1955)

  
5



6

Superfluid helium-4 
From Wikipedia, the free encyclopedia.

L. D. Landau's phenomenological and semi-microscopic theory of 
superfluidity of helium-4 earned him the Nobel Prize in physics, in 1962. 
Assuming that sound waves are the most important excitations in helium-
4 at low temperatures, he showed that helium-4 flowing past a wall 
would not spontaneously create excitations if the flow velocity was less 
than the sound velocity. In this model, the sound velocity is the "critical 
velocity" above which superfluidity is destroyed. 

A superfluid is a state of matter in which the matter behaves like a fluid 
with zero viscosity. The substance, which looks like a normal liquid, flows 
without friction past any surface, which allows it to continue to circulate 
over obstructions and through pores in containers which hold it, subject 
only to its own inertia.

Landau thought that vorticity entered superfluid helium-4 by vortex sheets, but such sheets 
have since been shown to be unstable. Lars Onsager and, later independently, Feynman 
showed that vorticity enters by quantized vortex lines. They also developed the idea of 
quantum vortex rings. Hendrik van der Bijl in the 1940s,[23] and Richard Feynman around 1955,
[24] developed microscopic theories for the roton, which was shortly observed with inelastic 
neutron experiments by Palevsky. Later on, Feynman admitted that his model gives only 
qualitative agreement with experiment.[25][26]

I, Alfred Leitner, took this photograph as part of my 
movie "Liquid Helium, Superfluid" - Own work (1962)

The liquid helium is in the superfluid phase. A 
thin invisible film creeps up the inside wall of the cup 
and down on the outside. A drop forms. It will fall off 
into the liquid helium below. This will repeat until the 
cup is empty - provided the liquid remains superfluid.

I, Alfred Leitner, took this photograph as part of my 
movie "Liquid Helium, Superfluid" - Own work (1962)

The liquid helium is in the superfluid phase. A 
thin invisible film creeps up the inside wall of the cup 
and down on the outside. A drop forms. It will fall off 
into the liquid helium below. This will repeat until the 
cup is empty - provided the liquid remains superfluid.
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Homework Problem due Friday, February  26

Problem 26.
Read this paper:

Bewley, G. P., Lathrop, D. P. and Sreenivasan, K. R. 
(2006). Visualization of quantized vortices. Nature. 441, 
588. 

In one paragraph (wrıtten ın your own words) with 
one figure (drawn by you),
summarize the paper.


