Chapter 9 : Quasi particles in plasmas
and metals

Phonons and Plasmons
... continued

Recall the result derived last time:
The self-consistent field theory with

o) =1/Q%, ¢(-q) exp(iqx-iet)
must have

¢(—q) e(q,w) =0
where the “dielectric function” is
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sk

(Harris Eq.9-20)

The system consists of MANY charged
particles—electrons and ions—with total
charge = 0.
1/ The particles interact with an electrostatic
potential, ¢ (xt).
H=y [ W*[-#2VZ2m+e @, ¥ &’

S
(s = species;s=eandi )

2/ We'll solve that QFT (approximately) in
terms of a dielectric function.

3/ The particles create an electrostatic field,
P, (x1).

4/ The self-consistent field approximation:
P, (xt) =D, (xt)




FSO(k) _ Fso(k B q)
ho —ho, (k, k - qQ

Now we will interpret the result, in terms
of quasi-particles.

Waves can exist within the material
provided that &(q,0) = 0. This equation
implies a “dispersion relation”,

o = o(q).
The excitations of the plasma are like
field quanta, which we call quasi-
particles.
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Rewrite this in terms of the velocity
distribution;

hk=m v; dk=(@m/h)’d% ;
F_ (k) d°k/(2n)* = £ (v) d3v

Also, the denominator =

ho-[E®)~Ek-q)]
=ho— h?k?/2m + h?(k - q)%/2m
=h [o—v.q + th/ZmS]




So,
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(Eq. 9-23)

A CLASSICAL APPROXIMATION,
not really necessary,
but just to simplify the analysis.

Take the limit h — 0 in the integrand.
. numerator — — (f , /ov)-(—hq/m_)

( This is not really classical physics,
because f (v) = the Fermi-Dirac
distribution; i.e., the Pauli exclusion
principle is included. )
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THE IMPROPER INTEGRAL

Landau:
we should replace o by o +1in,
withn—0".

"IPlemelj formula:

1/(x+in) = P (1/X) - in 3(X)

so now &(q,m) may be complex.

O elqm) =0

SO ® may be complex.

1 If Sm(w) is negative then the waves are
damped.

1 We won’t use the Plemelj formula.
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THE FERMI-DIRAC DISTRIBUTION FUNCTION

Even at room temperature we can treat the
conduction electrons as a degenerate gas of
fermions. Then,

n/@/3n VFS3) for v<v_

fo(V) = {

0 for v> '

where the Fermi velocity is
v = (h/my) (3n% )t~

o= 3NV {5 -1}
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THE VELOCITY INTEGRAL
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WE SEEK THE SOLUTIONS OF

e(q,m) =0

In other words we want to know o
as a function of q,

o = o(q) “dispersion relation”

q is real; ® might be complex;
if ® has a negative real part then the
waves are damped in time.

L&J":é M’ 'h Sore e -farahe.»éw vaber .
/Me+¢(§¢ So e,
€, = —e  ald M= qxi A

Er=e  wd m, = 23><jg-4gxm"”@
m = i = 6?70 2

My - -?lE'fx!oza m"jl
Ke = (%";l)b? .‘?:f'-‘w = (Lo¥ <10° W)™
Kk, = k* "fﬁ (nete = [<F I12)
Uf;'e = %(31?‘}1)& = LOE3 x/p° wg
B = % 4‘2.% ond 2 = Z‘g%




PLAsMONS
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Péonons
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(the damping is small)

Dispersion relation for phonons
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For long wavelengths (q — 0),

csound q.
according to Harris,
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Homework Problems due Wednesday March 2

Problem 28.

Use the dielectric function that was derived in the lecture of
Feb. 22 to calculate the electrostatic potential ®(x) about a
stationary charge Q immersed in the plasma.

Hints: the potential would be Q/r if there were no plasma;
for a stationary charge the frequency o is O.

Problem 29.

Calculate the speed of sound in metallic sodium, based on
the theory of phonons described in the lecture of Feb. 22.
Compare the result to the measured value.




