
ε(q,ω) = 1 + ∑∑  ———     ————————
                     s k

Chapter 9 : Quasi particles in plasmas 
and metals

Phonons and Plasmons

… continued

Recall the result derived last time:
The self-consistent field theory with 
Φ(x,t) = 1/Ω ∑q φ(−q) exp( i q.x − i ωt ) 
must have

φ(−q) ε(q,ω) = 0
where the “dielectric function” is

            

(Harris Eq.9-20)

4π es
2      Fs0(k) − Fs0(k - q)

 Ω q2     ħω − ħωs (k, k - q)

The system consists of MANY  charged 
particles—electrons and ions—with total 
charge = 0.

1/ The particles interact with an electrostatic 
potential,  ϕ1(x,t).

H = ∑  ∫  Ψ♱ [−ℏ2∇2/2m + es Φ1 ] Ψ  d3x
       s
(s = species; s = e and i   )

2/ We’ll solve that QFT (approximately) in 
terms of a dielectric function.

3/ The particles create an electrostatic field, 
Φ2 (x,t).

4/ The self-consistent field approximation:
Φ1 (x,t) = Φ2 (x,t)
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Rewrite this in terms of the velocity 
distribution;

ħ k = ms v ; d3k = (ms /ħ )3 d3v  ;

Fs0(k) d3k/(2π)3  = fs0(v) d3v 

Also, the denominator = 

ħ ω − [ Es(k) − Es(k - q) ]

    = ħ ω −  ħ2k2 /2m + ħ2(k - q)2/2m

    = ħ  [ ω − v.q  +  ħq2/2m
s
 ] 

Now we will interpret the result, in terms 
of quasi-particles.

Waves can exist within the material 
provided that ε(q,ω) = 0. This equation 
implies a “dispersion relation”,

ω = ω(q).
The excitations of the plasma are like 
field quanta, which we call quasi-
particles.

4π es
2      Fs0(k) − Fs0(k - q)
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4π es
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So,

(Eq. 9-23)

A CLASSICAL APPROXIMATION,
not really necessary,
but just to simplify the analysis.

Take the limit ħ ⟶ 0 in the integrand.

∴ numerator ⟶   − (∂fs0 
 /∂v)・( − ħq/ms )

( This is not really classical physics,
because fs0(v) = the Fermi-Dirac 
distribution; i.e., the Pauli exclusion 
principle is included.   )

THE IMPROPER INTEGRAL

�Landau:
we should replace ω by ω + i η,
with η ⟶ 0+ .
�Plemelj formula:
1/(x+iη) = P (1/x) – iπ δ(x)
so now ε(q,ω) may be complex.
� ε(q,ω) = 0   :
so ω may be complex.
� If Im(ω) is negative then the waves are 
damped.
� We won’t use the Plemelj formula.

4π es
2              fs0(v) − fs0(v - ħq/ms)

  ħq2               ω − v.q + ħq2/2ms

ε(q,ω) = 1 

   + ∑  ——— ∫ d3v  —————————

      s
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4π es
2                q ・∂fs0 /∂v

 msq
2                 ω − v.q

ε(q,ω) = 1 

             + ∑  ——— ∫ d3v ———————

                s



         ∂fs0          3n         v
∂v         4 π v

Fs
3     v

THE VELOCITY INTEGRAL

—— =  ————  —  { −δ(vFs − v) }

THE FERMI-DIRAC DISTRIBUTION FUNCTION

Even at room temperature we can treat the 
conduction electrons as a degenerate gas of 
fermions. Then,

                    n / (4/3 π v
Fs

3)  for  v < v
Fs

fs0(v) = {
                    0   for   v > v

Fs

where the Fermi velocity is
v

Fs
 = ( ħ /ms ) (3π

2 n)1 /3   .
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                s



WE SEEK THE SOLUTIONS OF

ε(q,ω) = 0

In other words we want to know ω 
as a function of q,

ω = ω(q) “dispersion relation”

q is real; ω might be complex;
if ω has a negative real part then the 
waves are damped in time.
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6

Dispersion relation for plasmons
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Dispersion relation for phonons

For long wavelengths (q ⟶ 0),

ω = csound q  ;

according to Harris,

csound = vFe/√(3)   ×   (me/mi  )
1 /2

(the damping is small)



8

Homework Problems due Wednesday March 2

Problem 28.
Use the dielectric function that was derived in the lecture of 
Feb. 22 to calculate the electrostatic potential Φ(x) about a 
stationary charge Q immersed in the plasma.
Hints: the potential would be Q/r if there were no plasma;
for a stationary charge the frequency ω is 0.

Problem 29.
Calculate the speed of sound in metallic sodium, based on 
the theory of phonons described in the lecture of Feb. 22.
Compare the result to the measured value.


