Forget about particles.

What are the fields?

What equations govern the fields?

* We always start with a classical
field theory.

% The field equations come from
Lagrangian dynamics.

Today’s example: The Lagrangian for
the Schroedinger equation.

Review of Lagrangian dynamics
For a single coordinate q(t) :

Lagrangian L =L (q, dqg/dt);

and Action A=[,*L(q,dg/dt)dt.

The equation of motion for q(t) comes from the
requirement that A = 0 (with endpoints fixed); i.e., the
action is an extremum. For a variation 5q(t)
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(Lagrange’s equation)
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Canonical momentum and the Hamiltonian
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Example. A particle in a potential...
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Canonical Quantization (Dirac)

Rules to convert classical
dynamics to a quantum theory:

% g and p become operators;
they operate on the Hilbert
space of physical states.

* [q,pl=ih

% His the generator of
translation in time.




Theorem.

H is the generator of translation in time
for the quantum theory.

Suppose L = %2 M (dq/dt)* - V(q).
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Q.E.D.

So far, we have considered only one degree of
freedom. Now consider a system with many
degrees of freedom; {q,:i=123...D}

For many degrees of freedom...
qit) - QM) ={qt);i=123 ...i...N}

m [ =L(Q,dQ/dt) = Lagrange’s equations

d QL) L fori=123...N
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(which must be re-expressed
in terms of p,...p and q,...q.)
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Classical field theory
(suppress spin for now)

We replaced

q®) — {q,® ;
Now replace
qt) — {w(x,1)

1 €71}, discrete

: X € R3}; continuum

L= L( v(x,0), oy(x,0/at)
= [ e(y(x,D, Vyx,, opx,n/ot) d*x
Lagrange’s equation ---

"4_'( oL ) J L .2 functional derivatives;
lf ( - =p partial derivatives;
2 ¥lo ; 'Ph?)

this is the “classical field theory.”
Mathematically it’s an example continuum dynamics.

THE LAGRANGIAN FOR
SCHROEDINGER WAVE MECHANICS
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Lagrange’s Equations
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Thus, the classical field equation is the

Schroedinger equation.
Canonical momenta
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Ouantization
So far, this is the classical field theory.
Now...

Dirac’s canonical commutation relation
[g,p]l=1h isvalid for Hermitian
operators g and p. We need to change that
(because vy is complex) to

[’-4/(,‘)) )] = ."L.f & x-%1) When T = 2_5‘,4,1'
[0, m*ted] = 3F & 0o
Therefore
Cton, ¥*6n]= (%)
[ Who, ¥ ben] = 0

Or, replace these by anticommutators for
fermions.

Summary
[vX),y(x)]=0
[y(X), y"(X) ] = 8(x-X") ;
or, use anticommutators for fermions;

He [dc {5 v¥oor +votes

This is precisely the NRQFT that we have
been using, but with a 1-body potential V(x)
and without a 2-body potential V, (X,y).

Exercise: Figure out the Lagrangian that
would include a 2-body potential. Hint: The
Lagrangian must include a term quartic in
the field.

Exercise: Verify that H is the generator of
translation in time, in the quantum theory.

r
O




Homework Problems due Wednesday March 2

Problem 30. Equal time commutation relations.
We have, in the Schroedinger picture,

[, vF ) 1= 8°xx)
etc.
(a) Show that in the Heisenberg picture, this
commutation relation holds at all equal times.

(b ) What is the commutation relation for
different times?

Problem 31.

(a ) Do problem 2.1 in Mandl and Shaw.
(b ) Do problem 2.2 in Mandl and Shaw.
(c ) Do problem 2.3 in Mandl and Shaw.




