LAGRANGIAN FIELD THEORY AND
CANONICAL QUANTIZATION (CHAPTER 2)

In the history of science, the first field theory was
electromagnetism. (Maxwell) &

There are 2 vector fields, E and B.

In spacetime we have a field tensor.

F.u.\) _ O —€y —8y —E2
- Ex © B -8B,
E» & o B
Ez By -8 ©
0"; F’MV = JNAY . IYAM
wheve T = g““" %xv

B The classical field theory describes
electromagnetic waves with o = ck.

B The quantum field theory describes
photons. (Chapter 1)

B Wecan derive the theory from a
Lagrangian, and then quantize it.

But there are some subtleties, due to gauge
invariance! (Chapter 5)

Electromagnetism isn’t very interesting
without sources, i.e., charges.

B We’ll add the electron field in PHY 955.
That’s Quantum ElectroDynamics. (Ch. 7)
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Recall the example of the Schroedinger
equation

Classical field theory: y(x,t) is a complex
function.
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Quantum:
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y(X,t) i1s a non-hermitian operator.

Now another example: (SECTION 2.2 - 2.3)
A REAL SCALAR FIELD ¢ = @(x,1)
This example is relativistically covariant.
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We can solve the Klein-Gordon equation,
in plane waves,
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Note that this is the energy (ho) and
momentum (hK) relation of special
relativity.

(What are the negative energy solutions?)

The general solution (Hermitian) is
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Quantization
We can anticipate

[a,a,T1=5(k,k)

[a,,a,]1=0

Derive this from Dirac’s canonical
quantization. Recall,

[q,p]l=1h where p-=27dL/oq
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The Hamiltonian
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Homework problem.
(A') Write H in terms of 11(x) and @(x).
(B) Write Hin terms ofa _and a T .

Homework problem.
Determine the Green’s function for the free
scalar field; <O| T @(x) @(y)|0> .




Next: A real scalar field ¢ with a source p .

To make it simpler, seth =1 and c=1. (natural units)
At the end of a calculation we can restore the factors
of h and c by dimensional analysis (i.e., simple units
analysis).
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The field equation is a linear inhomogeneous equation;

S0 (P(X,t) = (pparticular(x’t) + (phomogeneous(x’t)'

The particular solution comes from the source; e.g., it
could be a mean field produced by a static source; or,
waves radiated by a time dependent source.

The homogeneous solution consists of harmonic waves.

The particular solution for a static source

Consider p = p(x), independent of t
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The Green’s function of -V ?+ m?
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Example
Suppose p(x) =p_0(a-r).
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The interaction Lagrangian density

_ t
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A This Qint acts as a source for ¢, with

p (x,t) = g ‘P‘rap ‘"Pap .

[ Italso acts as a potential for ¥ :
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.". The field equations;
i.e., Lagrange’s equations,
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Calculate the potential energy for a nucleon (N)

attracted to a heavy isotope (Z,A)
[
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First step -- calculate the mean field created by the

nucleons in the heavy isotope.
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Second step -- calculate the potential energy for the
presence of the extra nucleon.
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Rewrite this for numerical calculation...




Yukawa’s theory of

the nucleon-nucleon force (1935)

(1) Nucleons interact through a scalar field ¢
with mass m.

(2) The range of the force is
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Of course Yukawa did not know about pions,
which were discovered in 1947.

mass (m*)= 139.6 MeV/c?

mass (w°) = 135.0 MeV/c?

The Lagrangian density for the theory is
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Lagrange’s equations including the interaction,
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Numerical calculations

r,=1.25fm
mc? = 140 MeV
A =238

g=15

R=r A'?
(o)
pion mass

uranium

strong interaction

The potential energy for the extra nucleon is
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Homework due Wednesday, March 2

Problem 32.
For the free real scalar field,

(A ) Write H in terms of m(x) and @(x).

(B ) Write H in terms of a,_and aF

Problem 33.
(A ) Mandl and Shaw problem 3.3.
(B ) Mandl and Shaw problem 3.4.
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