
Experiment 7

The Spring: Hooke’s Law and
Oscillations

7.1 Objectives

• Investigate how a spring behaves when it is stretched under the influ-
ence of an external force. To verify that this behavior is accurately
described by Hooke’s Law.

• Measure the spring constant (k) in two independent ways.

7.2 Introduction

Springs appear to be very simple tools we use everyday for multiple purposes.
We have springs in our cars to make the ride less bumpy. We have springs
in our pens to help keep our pockets/backpacks ink free. It turns out that
there is a lot of physics involved in this simple tool. Springs can be used
as harmonic oscillators and also as tools for applying a force to something.
Today we will learn about the physics involved in a spring, and why the
spring is such an interesting creation.
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7. The Spring: Hooke’s Law and Oscillations

7.3 Key Concepts

You can find a summary on-line at Hyperphysics.1 Look for keywords:
Hooke’s Law, oscillation

7.4 Theory

Hooke’s Law

An ideal spring is remarkable in the sense that it is a system where the
generated force is linearly dependent on how far it is stretched. Hooke’s
law describes this behavior, and we would like to verify this in lab today. In
order to extend a spring by an amount Δx from its previous position, one
needs a force F which is determined by F = kΔx. Hooke’s Law states
that:

FS = −kΔx (7.1)

Here k is the spring constant, which is a quality particular to each
spring, and Δx is the distance the spring is stretched or compressed. The
force FS is a restorative force and its direction is opposite (hence the
minus sign) to the direction of the spring’s displacement Δx.

To verify Hooke’s Law, we must show that the spring force FS and the
distance the spring is stretched Δx are proportional to each other (that
just means linearly dependant on each other), and that the constant of
proportionality is −k.

In our case the external force is provided by attaching a mass, m, to
the end of the spring. The mass will of course be acted upon by gravity, so
the force exerted downward on the spring will be Fg = mg (see Fig. 7.1).
Consider the forces exerted on the attached mass. The force of gravity (mg)
is pointing downward. The force exerted by the spring (−kΔx) is pulling
upwards. When the mass is attached to the spring, the spring will stretch
until it reaches the point where the two forces are equal but pointing in
opposite directions :

FS − Fg = 0 or − kΔx = mg (7.2)

This point where the forces balance each other out is known as the
equilibrium point. The spring + mass system can stay at the equilibrium

1http://hyperphysics.phy-astr.gsu.edu/hbase/hph.html
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7.4. Theory

Figure 7.1: Force diagram of a spring in equilibrium with various hanging
masses.

point indefinitely as long as no additional external forces are exerted on it.
The relationship in Eq. 7.2 allows us to determine the spring constant k
when m, g, and Δx are known or can be measured. This is the first way
that k will determined today.

Oscillation

The position where the mass is at rest is called the equilibrium position
(x = x0). As we now know, the downward force due to gravity Fg = mg and
the force due to the spring pulling upward FS = −kΔx cancel each other.
This is shown in the first part of Fig. 7.2. However, if the string is stretched
beyond its equilibrium point by pulling it down and then releasing it, the
mass will accelerate upward (a > 0), because the force due to the spring
is larger than gravity pulling down. The mass will then pass through the
equilibrium point and continue to move upward. Once above the equilibrium
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Figure 7.2: One cycle or period (τ) of an oscillation of a spring. Note that
in the figure T is used instead of τ to indicate period and t is used as the
length of time since the start of the oscillation. For example, the spring is
at its maximum compression at time equal to half a period (t = T/2).

position, the motion will slow because the net force acting on the mass is
now downward (i.e. the downward force due to gravity is constant while the
upwardly directed spring force is getting smaller). The mass and spring will
stop and then its downward acceleration will cause it to move back down
again. The result of this is that the mass will oscillate around the equilibrium
position. These steps and the forces (F ), accelerations (a), and velocities
(v) are illustrated in Fig. 7.2 for a complete cycle of an oscillation. The
oscillation will proceed with a characteristic period, τ , which is determined
by the spring constant, k, and the total attached mass, m. This period
is the time it takes for the spring to complete one oscillation, or the time
necessary to return to the point where the cycle starts repeating (the points
where x, v, and a are the same). One complete cycle is shown in Fig. 7.2
and the time (t) of each position is indicated in terms of the period τ . The
period, τ , of an oscillating spring is given by:

τ = 2π

√
m

k
(7.3)
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7.5. In today’s lab

where k is the spring constant and m is the hanging mass, assuming the
ideal case where the spring itself is massless. (For this lab the spring cannot
be treated as massless so you will add 1

3 of its weight to the hanging mass
when calculating m used in Eq. 7.3.)

In order to determine the spring constant, k, from the period of oscillation,
τ , it is convenient to square both sides of Eq. 7.3, giving:

τ2 =
4π2

k
m (7.4)

This equation has the same form as the equation of a line, y = mx+ b, with
a y-intercept of zero (b = 0). When plotting τ2 vs. m the slope is related to
the spring constant by:

slope =
4π2

k
(7.5)

So the spring constant can be determined by measuring the period of
oscillation for different hanging masses. This is the second way that k will
be determined today.

7.5 In today’s lab

Today you will measure the spring constant (k) of a given spring in two
ways. First, you will gradually add mass (m) to the spring and measure
its displacement (Δx) when in equilibrium; then using Hooke’s law and
Eq. 7.2 you will plot FS vs. Δx to find the spring constant. Second, you
will measure the spring’s period (τ ) of oscillation for various hanging masses;
then plot τ2 vs. m and use Eq. 7.5 to find the spring constant in a different
way. You will check whether the two values of k are consistent and if your
spring obeyed Hooke’s Law.

7.6 Equipment

• Spring

• Photogate

• Masses

• Hanger

Last updated August 20, 2015 75
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7.7 Procedure

DO NOT LEAVE MASSES HANGING ON THE SPRING!

Part I: Hooke’s Law

1. Measure the rest length (nothing on the end) of the spring and record
it in your data sheet. (Don’t remove it from the stand, just hold a
meter stick up to it.)

2. Calculate the mass of the spring using the given spring density and
the rest length of the spring. Record this value in your data sheet.

3. Record the mass of the hanger, mH = 50.0 g, in your data sheet.

4. Attach the empty hanger to the bottom of the spring and measure
the height X0 of the end of the spring from the table. Make sure to
put the zero end of the meter stick on the table. Choose a reasonable
uncertainty for X0.

5. Increase the total mass on the end of the spring to 120 g (this includes
the mass of the hanger). Measure the height X of the spring and
record it in your data sheet.

6. Increase the mass by 10 g increments, making sure to measure and
record the height at each step, until you reach 220 g.

7. Calculate Δm = m −mH , ΔX = X −X0, and δ(X −X0) = 2δX0
for each trial.

8. Calculate the force of gravity pulling on the spring, FS = Δmg, for
each trial. We are using Δm, the amount of mass that was added to
the hanger, because we measured the displacement of the stretched
spring (ΔX) from the starting point of X0, which was the height of
the spring with the hanger on it.

9. Graph FS vs. ΔX in KaleidaGraph. Include horizontal error bars and
a best fit line.

10. Use your graph to verify Hooke’s Law: FS = −kΔX. The slope and
its uncertainty are related to the spring constant k.
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7.8. Checklist

Part II: Period of Oscillation

1. Turn the photogate on and set it to the PEND setting.

2. Start with a total mass of 120 g on the end of the spring and measure
the period of oscillation τ by causing the masses to oscillate through
the photogate. Do not stretch the spring more than 5 cm when
starting the oscillation (2 cm is enough) and pull straight down so the
spring isn’t swinging while oscillating. Repeat in 20 g intervals up to
220 g. You can adjust the height of the photogate and the height of
the spring to align the equilibrium position with the photogate. Make
sure the red light on the photogate flashes each time the mass passes
through the gate.

3. You need to take into account the mass of the spring (as this is
not an ideal case and the spring can’t be considered massless) when
calculating the total mass m felt by the spring in Eq. 7.4. To do
that add a third of the spring’s mass (which you calculated at the
top of the Excel spreadsheet) to the hanging mass using the formula

m = mH +Δm+ spring mass
3 in Excel. (Note that this is a different

m than you used in Part 1.)

4. Calculate τ2 in Excel for each trial.

5. Make a plot of τ2 vs. m in KaleidaGraph. Be sure to include a best
fit line on this plot.

6. Use Eq. 7.5 and the slope from your graph to calculate the spring
constant k. The uncertainty δk is found using:

δk

k
=

δslope

slope
(7.6)

7.8 Checklist

1. Excel spreadsheet and formula view

2. Plot of FS vs. ΔX with error bars.

3. Plot of τ2 vs. m

4. Answers to questions

Last updated August 20, 2015 77





7.9. Questions

7.9 Questions

1. From Part I: Is your data consistent with Hooke’s Law? Discuss why or why
not.

2. From Part I: Using your graph, what is the spring constant and its uncer-
tainty?
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7. The Spring: Hooke’s Law and Oscillations

3. From Part II: Calculate the spring constant and its uncertainty using the
information obtained from your graph of τ2 vs. m. Use Eq. 7.6 for δk.

4. You obtained the spring constant in two independent ways. Discuss the
consistency of your two measurements of the spring constant. If they are
not consistent, give possible reasons why they are not.
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7.9. Questions

5. When a mass m is attached to a spring it exerts a force W = mg on the
spring and the length of the spring is changed by Δx. If the single spring is
replaced with a) two identical springs in series, what happens to Δxseries
compared to the case of a single spring? b) If the single spring is replaced by
two identical springs in parallel, what happens to Δxparallel compared to the
case of a single spring? See figure above. Assume all springs are identical,
i.e. have the same spring constant k, length, mass, etc. Answer questions
a) and b) by stating if Δx increases, decreases or remains unchanged and
compare it to the single spring case, i.e. what are Δxseries and Δxparallel in
terms of Δx for the single spring case? Hint: Draw a force diagram of the
system remembering that the net force on the mass must be zero when it is
in equilibrium.
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2
3
4
5
6
7
8
9

10
11
12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

31
32
33
34
35
36
37
38
39

A B C D E F G
The Spring Part I

g = 980 [cm /sec2]
spring mass/length =   0.735 [gram/cm]

Zero position of spring: Measure the values
spring length spring mass mass (mH) X0 δX0 in the gray fields

[cm] [grams] [grams] [cm] [cm]
Calculate values
in the yellow fields

Spring extension vs. mass
Mass (m)=mH+Δm ∆m=m-mH X ΔX=X-X0 δ(X-X0)=2δX0 Force (FS)

[grams] [grams] [cm] [cm] [cm] [g cm/sec2]  
120
130
140
150
160
170
180
190
200
210
220

Add 1/3 of the spring mass to the mass of the hanger, mH

 and the added mass, Δm  to find the total mass in the table below
Period vs. mass

mH+Δm Total mass (m) Period (τ) τ2

[grams] (grams) [seconds] sec2

120
140
160
180
200
220


