PHY410 Homework Set 2

1. [5 pts] In class we saw that the additivity of entropy for systems in thermal contact emerges within the approximation where we compute the entropy for the most likely state of subsystems, $\log (\bar{g}_I \bar{g}_{II})$, rather than for the convolution of all possible states of subsystems, $\log [\sum_{U_I} g_I(N_I, U_I) g_{II}(N - N_I, U - U_I)]$. The error is expected to be small when both N_I and N_{II} are large. For N_I , $N_{II} \gg 1$, we found

$$\log g(N,s) = \log \left(\overline{g}_{I} \,\overline{g}_{II}\right) + \frac{1}{2} \log \left(\frac{\pi}{2} \,\frac{N_{I} \,N_{II}}{N}\right).$$

Consider now the two cases of s = U = 0, one with $N_I = N_{II} = 0.5 \times 10^{22}$ spins, and another with $N_I = 10^{22}$ and $N_{II} = 10$. For each of those cases compute the relative error made to the entropy when assuming the additivity above. Comment on your findings.

- 2. [5 pts] Kittel-Kroemer, problem 2-1.
- 3. [10 pts]
 - (a) First solve the problem 2-2 in Kittel-Kroemer. The result you are likely to find for the magnetization is known as Curie's law. Note that U < 0, as the aligned magnetic dipoles contribute negative energy, -mB, and anti-aligned dipoles contribute positive, mB. The derived expression for τ may be rearranged into

$$-\frac{U}{N}\tau = (m\,B)^2$$

The latter says that the average energy per dipole U/N times the energy scale set by the temperature τ produces a constant. This result can be interpreted in the following way. The tendencies in the system are of reducing energy, i.e. of making U as negative as possible, but also of increasing entropy, i.e. making the dipole alignment as random as possible. The temperature controls which is more important. At high temperatures, entropy wins and $U \to 0$. At low temperatures, the energy wins. The expression above gives $U \to -\infty$ as $\tau \to 0$, but that pathology is due to the breakdown of the applied approximations.

- (b) Using the net magnetization $M = 2m\langle s \rangle$, find the magnetic susceptibility $\chi = (\partial M / \partial B)_N$ as a function of temperature τ .
- (c) Express the entropy σ in terms of τ , B, and N. Consider now a process where the magnetic field B is gradually *reduced* from its initial value B_i to the final value $B_f < B_i$. The temperature in the initial state is τ_i and the system is enclosed so that N does not change. Assuming that the entropy $\sigma(\tau, B, N)$ remains constant during this process find final temperature τ_f . How is the temperature ratio τ_f/τ_i related to the magnetic field ratio B_f/B_i ? The so-called adiabatic demagnetization is employed in magnetic refrigeration.
- 4. [5 pts] Kittel-Kroemer, problem 2-3. Regarding the multiplicity for a set of harmonic oscillators, read the appropriate portion of Chapter 1.