Next topic:
QUANTUM FIELD THEORY AND MANY PARTICLE SYSTEMS
Think of many applications ...
References:
Fetter and Walecka,
Quantum Theory of Many-Particle
Systems (famous primary text; not obsolete, but old fashioned)
E. G. Harris,
A Pedestrian Approach to Quantum Field Theory (pedestrian; somewhat obsolete)
We don't have time to cover the field at the depth of Fetter and Walecka. We'll study some essential ideas: Chapters 1, 3, 4 ?

Chapter 1 : SECOND QUANTIZATION

1. The Schroedinger equation in first and second quantization
a. Bosons
b. Many particle Hilbert space
c. Fermions
2. Fields
3. Example : Degenerate electron gas

SECTION 1 : THE SCHROEDINGER EQUATION IN FIRST AND SECOND QUANTIZATION

Start with

$$
\mathrm{H}=\sum_{\mathrm{k}=1}^{\mathrm{N}} \mathrm{~T}_{\mathrm{k}}+1 / 2 \sum^{\prime} \mathrm{N}_{\mathrm{k}, \mathrm{l}=1} \mathrm{~V}\left(\mathrm{x}_{\mathrm{k}^{\prime}} \mathrm{x}_{\mathrm{l}}\right) ;
$$

Note $\Sigma^{\prime}:$ the prime means $l \neq k$.

N particles; interacting with each other by a 2particle interaction $\mathrm{V}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$.

The essential goal of quantum mechanics is to solve the Schroedinger equation, iћ $\partial \Psi / \partial t=H \Psi$
where

$$
\Psi=\Psi\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots, \mathrm{x}_{\mathrm{N}} ; \mathrm{t}\right) .
$$

The first quantized theory

$$
\begin{aligned}
& H=\sum_{k=1}^{N} T_{k}+\frac{1}{2} \sum_{k, l=1}^{N} V\left(x_{k}, x_{l}\right) \\
& T_{k}=-\frac{\hbar^{2}}{2 m} \nabla_{k}^{2}+U\left(x_{k}\right) \quad \text { "on e-body } \\
& \text { operator" }
\end{aligned}
$$

Notations

- Index k labels one of the N particles; the set of k values is $\{k\}=\{123$... ... N $\}$.
- x_{k} is a complete set of coordinates for particle k; for example, for an electron, $\mathrm{x}_{\mathrm{k}}=\left(x_{k}, y_{k}, z_{k}, \xi_{k}\right)$.

Cartesian words.; spin word.; $\in(0, L) \quad \in(1,-1)$

To Solve: $\quad i \hbar \partial \Psi / \partial t=H \Psi$
where $\Psi=\Psi\left(\mathrm{x}_{1} \mathrm{x}_{2} \mathrm{x}_{3} \ldots \mathrm{x}_{\mathrm{k}} \ldots \mathrm{x}_{\mathrm{N}}\right)$
Introduce a complete set of time-independent single-particle wave functions

Single - particle states
$\psi_{E}(x) \quad\left\{\begin{array}{l}x=\text { coordinates } \\ E=\text { quantum numbers }\end{array}\right.$
For example, for an election in a box,

$$
\begin{aligned}
& E=\left(p_{x}, p_{y}, p_{z}, S_{z}\right) \\
& \psi_{E}(x)=\frac{1}{\sqrt{\Omega}} e^{(\vec{k} \vec{x} / \hbar} u \\
& \vec{r}=\frac{2 \pi}{L} \hbar \vec{n} \quad(\text { P.B.C. }) \text { and } u=\binom{1}{0} \text { or ((0) }
\end{aligned}
$$

Completeness: We can expand the N particle wave function as a product of single-particle wave functions

$$
\begin{aligned}
& \Phi\left(x_{1}, x_{2}, x_{2} \ldots x_{N} ; t\right) \\
&= \sum_{E_{1}^{\prime}} \sum_{E_{2}^{\prime}} \ldots \sum_{E_{N}^{\prime}} C\left(E_{1}^{\prime} E_{2}^{\prime} \ldots E_{N^{\prime}} ; t\right) \\
& \prod_{k=1}^{N} \prod_{E_{k}^{\prime}}\left(x_{k}\right)
\end{aligned}
$$

or,

$$
\Psi(\{x\} ; t)=\sum_{\{\in,\}} C(\{E\} ; t) \prod_{k=1}^{N} \psi_{\xi^{\prime}}\left(x_{k}\right)
$$

By the orthonormality of the s.-p. states \qquad

$$
\begin{gathered}
C\left(\{E\}_{j} t\right)=\int \prod_{k=1}^{N} \psi_{E_{k}}^{+}\left(x_{k}\right) \bar{\Psi}(\{\times\} ; t) d \tau_{k} \\
d \tau_{k}=d^{3} x_{k} \sum_{\xi_{k}}
\end{gathered}
$$

Interpretation: $|\mathrm{C}(\{\mathrm{E}\} ; \mathrm{t})|^{2}=$ the probability that the particles have quantum numbers $\left\{\mathrm{E}_{1} \mathrm{E}_{2} \ldots \mathrm{E}_{\mathrm{k}} \ldots \mathrm{E}_{\mathrm{N}}\right\}$

Normalization relations

$$
\begin{aligned}
& \int \Psi^{+} \Psi \underset{k=1}{N} d \tau_{k}=1 \\
& \sum_{\{E\}}|c(\{E\} ; t)|^{2}=1
\end{aligned}
$$

The Schroedinger equation for $\mathrm{C}(\{\mathrm{E}\} ; \mathrm{t})$

$$
\begin{aligned}
& i \hbar \frac{\partial}{\partial t} C=\sum_{k=1}^{N} \sum_{w}\left\langle E_{k}\right| T|w\rangle C\left(E_{1} \ldots \ldots \ldots E_{N} ; t\right) \\
& 2 \text { position } k \\
& +\frac{1}{2} \sum_{k, l=1}^{N} \sum_{w} \sum_{w^{\prime}}\left\langle\varepsilon_{k} \varepsilon_{l}\right| v\left|w w^{\prime}\right\rangle \\
& C\left(E_{1} \ldots w \ldots w^{\prime} \ldots E_{N} ; t\right) \\
& \text { positions } k \text { and }
\end{aligned}
$$

$\left\langle E_{k}\right| T|w\rangle=a$ single particle matrix element
$\left\langle E_{k} E_{l}\right| V\left|w w^{\prime}\right\rangle=a \quad 2$-particle matrix elena

So far, this is simple.
But now comes the hard part:
Assume that the N particles are identical particles.

Identical particles are indistinguishable.

I.e., the N-body wave function cannot tell which particle (k) has a particular set of quantum numbers (E_{i}).
$\therefore \Psi^{+} \Psi$ must be invariant under any interchange of coordinates, $\mathrm{X}_{k} \leftrightarrow \mathrm{x}_{l}$.

1a. BOSONS

$\Psi\left(\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{N}} ; \mathrm{t}\right)$ must be symmetric with respect to interchange of any two coordinates; i.e.,

$$
\Psi\left(\ldots \mathrm{x}_{k} \ldots \mathrm{x}_{l} \ldots ; \mathrm{t}\right)=+\Psi\left(\ldots \mathrm{x}_{l} \ldots \mathrm{x}_{k} \ldots ; \mathrm{t}\right)
$$

Then also,

$$
\mathrm{C}\left(\ldots \mathrm{E}_{i} \ldots \mathrm{E}_{j} \ldots ; \mathrm{t}\right)=+\mathrm{C}\left(\ldots \mathrm{E}_{j} \ldots \mathrm{E}_{i} \ldots ; \mathrm{t}\right)
$$

Understand the notation:
k, l, \ldots are particle labels; all are different;
$k \in\{1,2,3, \ldots, N\}$;
$i, j, \ldots=$ s.-p. state labels; some might be the same; $\boldsymbol{i} \in\{1,2,3, \ldots, \infty\}$;

The space of occupation numbers (Fock space)
$C\left(E_{1}, E_{2}, E_{3}, \ldots, E_{N}\right)$ could depend on $3 N$ quantum numbers (ignore spin; set spin = 0 since they are bosons);
e.g., $\left\{p_{1}, p_{2}, p_{3}, \ldots, p_{N}\right\}$
where $p_{k}=\left(p_{k x^{\prime}} p_{k y} p_{k z}\right)$.
But C could depend on as few as 3 quantum numbers,
$\left\{\mathbf{p}_{1}, \mathbf{p}_{1}, \mathbf{p}_{1}, \ldots, \mathbf{p}_{1}\right\} \quad$ for bosons!
i.e., all the particles have the same quantum numbers.

In fact, by the exchange symmetry of the N -particle wave function, C is completely determined by the list of occupation numbers.

Imagine that all possible s.p. states can be listed in some order, $\left\{\mathrm{E}_{1}, \mathrm{E}_{2}, \mathrm{E}_{3}, \ldots, \mathrm{E}_{\mathrm{k}}, \ldots \ldots \ldots\right\}$
"standard order" (this is an infinite list).

Define occupation numbers:
$\mathrm{n}_{\mathrm{i}}=$ the number of particles in the state $\left|\mathrm{E}_{\mathrm{i}}\right\rangle$.
So, for a basis state Ψ, the set of occupation numbers is
$\left\{\mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{n}_{3}, \ldots, \mathrm{n}_{i}, \ldots \ldots \ldots\right\}$
For each $i, \mathrm{n}_{i} \in\{0,1,2,3, \ldots, \mathrm{~N}\}$;
and there is a crucial restriction,

$$
\sum_{i} \mathrm{n}_{i}=\mathrm{N}
$$

Then $C\left(E_{1}, E_{2}, E_{3}, \ldots, E_{N}\right)=\hat{C}\left(n_{1}, n_{2}, n_{3}, \ldots\right)$ because different orderings are equal.
$C(\{E\} ; t)$ is symmetric w.r.t. any exchanges in the list
$\{E\} \equiv\left\{E_{1}, E_{2}, E_{3}, \ldots, E_{N}\right\}$
$\hat{\mathrm{C}}(\{\mathrm{n}\} ; \mathrm{t})$ has no symmetry property; $\{n\}$ is in the standard order; and there is a restriction, $\sum \mathrm{n}_{\mathrm{i}}=\mathrm{N}$. i
The interpretation of $\hat{\mathbf{c}}(\{\mathrm{n}\} ; \mathrm{t})$
We have
$\hat{\mathrm{C}}\left(\mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{n}_{3}, \ldots\right)=\mathrm{C}\left(\mathrm{E}_{1}, \mathrm{E}_{2}, \mathrm{E}_{3}, \ldots, \mathrm{E}_{\mathrm{N}}\right)$;
the right-hand side is invariant w.r.t. all permutations of the list
$\left\{\mathrm{E}_{1}, \mathrm{E}_{2}, \mathrm{E}_{3}, \ldots, \mathrm{E}_{\mathrm{N}}\right\}$;
"symmetry of the wavefunction"

Probabilities and normalizations We have

$$
\begin{aligned}
& \int \Phi^{+} \Psi \prod_{k=1}^{N} d \tau_{k}=1 \\
& \sum_{\{E\}}|c(\{E\} ; t)|^{2}=1
\end{aligned}
$$

But $\sum|\hat{C}(\{n\}, t)|^{2}$ is not 1 .
\{n\}
So \hat{C} is not a probability amplitude.
The probability amplitude for occupation numbers $\{n\}$ is

$$
f_{N}(\{n\}, t\}=\operatorname{Sqrt}\left[N!/ \Pi n_{i}!\right] \hat{C}(\{n\}, t)
$$

The probability amplitude for the list of occupation numbers is

$$
\mathrm{f}_{\mathrm{N}}(\{\mathrm{n}\} ; \mathrm{t})=\left(\mathrm{N}!/ \Pi \mathrm{n}_{\mathrm{i}}!\right)^{1 / 2} \hat{\mathrm{C}}(\{\mathrm{n}\} ; \mathrm{t}) .
$$

i

$$
\begin{array}{cl}
\mathrm{N}!/\left(\Pi n_{\mathrm{i}}!\right) & =\text { the number of distinguishable } \\
& \begin{array}{l}
\text { permutations of }\{\mathrm{E}\} \text { when the list }
\end{array} \\
& \text { of occupation numbers is }\{\mathrm{n}\} .
\end{array}
$$

Normalization:

$$
\sum_{\{n\}}^{\prime}\left|f_{N}(\{n\} ; t)\right|^{2}=1
$$

(Σ^{\prime} : prime implies the restriction $\sum \mathrm{n}_{\mathrm{i}}=\mathrm{N}$)

Example. Consider $\mathrm{N}=2$.

* Both in the same state ;
$>\mathrm{N}!/\left(\Pi n_{\mathrm{i}}!\right)=2!/ 2!=1$
$>\boldsymbol{\Psi}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\Psi_{\mathrm{a}}\left(\mathrm{x}_{1}\right) \Psi_{\mathrm{a}}\left(\mathrm{x}_{2}\right)$
$>C\left(E_{\alpha^{\prime}} E_{\alpha}\right)=1$
* Two in different states ;
$>\mathrm{N}!/\left(\Pi n_{\mathrm{i}}!\right)=2!/(1!1!)=2$
$>\quad \boldsymbol{\Psi}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=$
$1 / \sqrt{ } 2\left[\psi_{a}\left(\mathrm{x}_{1}\right) \psi_{\beta}\left(\mathrm{x}_{2}\right)+\psi_{\beta}\left(\mathrm{x}_{1}\right) \psi_{\mathrm{a}}\left(\mathrm{x}_{2}\right)\right]$
$>C\left(\mathrm{E}_{\alpha} \mathrm{E}_{\beta}\right)=1 / \sqrt{ } 2, \mathrm{C}\left(\mathrm{E}_{\beta^{\prime}} \mathrm{E}_{\alpha}\right)=1 / \sqrt{ } 2$
$>\hat{C}(\{1,1\})=1 / \sqrt{ } 2, f_{2}(\{1,1\})=1$

Example. Consider $\mathrm{N}=3$.

* All three in the same state ;

$$
\begin{aligned}
> & \Psi_{\mathrm{a}}\left(\mathrm{x}_{1}\right) \Psi_{\mathrm{a}}\left(\mathrm{x}_{2}\right) \Psi_{\mathrm{a}}\left(\mathrm{x}_{3}\right) \\
> & \mathrm{f}_{3}(\{3,0,0,0 \ldots .\})=1
\end{aligned}
$$

* All three in different states ;

$$
\begin{aligned}
& 1 / \sqrt{6}[\\
& \Psi_{a}\left(x_{1}\right) \psi_{\beta}\left(x_{2}\right) \psi_{V}\left(x_{3}\right)+\Psi_{V}\left(x_{1}\right) \Psi_{a}\left(x_{2}\right) \Psi_{\beta}\left(x_{3}\right) \\
& +\Psi_{\beta}\left(x_{1}\right) \psi_{V}\left(x_{2}\right) \psi_{a}\left(x_{3}\right)+\psi_{\beta}\left(x_{1} \Psi_{a}\left(x_{2}\right) \psi_{V}\left(x_{3}\right)\right. \\
& +\Psi_{V}\left(x_{1}\right) \psi_{\beta}\left(x_{2}\right) \psi_{a}\left(x_{3}\right)+\psi_{a}\left(x_{1}\right) \psi_{V}\left(x_{2}\right) \psi_{\beta}\left(x_{3}\right) \\
&] \\
& f_{3}(\{1,1,1,0,0,0,0 \ldots .\})=1
\end{aligned}
$$

The most general state with N particles (bosons!) :

- The state would be a superposition of states with different occupation numbers;
- but each component would have to have $\sum \mathrm{n}_{\mathrm{i}}=\mathrm{N}$.
- Thus, the basis states for the N-particle Hilbert space are

$$
\begin{aligned}
& \Phi_{\mathrm{N}}(\{\mathrm{n}\} ;\{\mathrm{x}\})= \\
& \operatorname{Sqrt}\left[\Pi \mathrm{n}_{\mathrm{i}}!/ \mathrm{N}!\right] \sum_{P} \psi_{\mathrm{E} 1}\left(\mathrm{x}_{1}\right) \psi_{\mathrm{E} 2}\left(\mathrm{x}_{2}\right) \ldots \psi_{\mathrm{EN}}\left(\mathrm{x}_{\mathrm{N}}\right)
\end{aligned}
$$

Homework due Friday, February 5 ...

Problem 11.

Three identical bosons are in a harmonic oscillator potential. The total energy is $9 / 2 \hbar \omega$. What is the most that you can say about the 3-particle wave function, $\Psi\left(x_{1}, x_{2}, x_{3}\right)$.

Problem 12.
Consider two identical bosons (spin $=0$) moving in free space, and interacting with each other. Approximate the 2-particle wave function by products of free waves with momenta \mathbf{p}_{1} and \mathbf{p}_{2}.
(a) Calculate the expectation value of the two-body potential $\mathrm{V}\left(\mathbf{x}_{1}, \mathbf{x}_{\mathbf{2}}\right)$.
(b) Now suppose $\mathrm{V}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\mathrm{U}\left(\mathbf{x}_{\mathbf{1}}-\mathbf{x}_{\mathbf{2}}\right)$. Express the result of (a) in terms of the Fourier transform of $\mathrm{U}(\mathbf{r})$.

