Notations for today's lecture
(1) A complete set of
single-particle states;
$\psi_{\mathrm{i}}(\mathbf{x})$ where $\mathrm{i} \in\{1,2,3, \ldots, \infty\}$
($\mathrm{E}_{\mathrm{i}}=$ the quantum numbers for this state)
(2) The field for a spin-0 boson; (this is not a wave function --it's an operator in the Hilbert space of N particle states);

$$
\Psi(\mathbf{x})=\sum_{\mathrm{i}} \psi_{\mathrm{i}}(\mathbf{x}) \mathrm{b}_{\mathrm{i}}
$$

(3) The N particle wave function;

$$
\Phi\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots, \mathrm{x}_{\mathrm{N}} ; \mathrm{t}\right)
$$

Summary from the previous lecture

The quantum many-particle problem in first quantized form, for bosons:

- Understand that the symmetry of the wave function (for bosons) implies that the basis states depend only on the list of occupation numbers ...

$$
\Phi_{\{n\}}(\{x\})=\sqrt{\frac{\pi_{x_{i j}!}}{N!}} \sum_{p} \psi_{1}\left(x_{x} \ldots \psi_{k}\left(x_{k}\right) \cdots \psi_{v}\left(x_{v}\right)\right.
$$

- We can expand $\Phi(\{x\}, t)$ in occupationnumber basis states ...

$$
\Phi(\{\times\} ; t)=\sum_{\{n\}}^{\prime} f_{N}(\{n\} ; t) \Phi_{\{n\}}(\{x\})
$$

where $\mathrm{f}_{\mathrm{N}}(\{\mathrm{n}\}, \mathrm{t})$ is a probability amplitude.

1b. THE MANY-PARTICLE HILBERT SPACE ; CREATION AND ANNIHILATION OPERATORS; SECOND QUANTIZATION
bosons!

- The index i labels a
single -particle state.
- Basis states: $\left|x_{1} x_{2} x_{3} \ldots\right\rangle$ or $|\{x\}\rangle$ where $\sum_{i=1}^{\infty} n_{i}=N$
- Orth normality

$$
\begin{gathered}
\left\langle\left\{n^{\prime}\right\} \mid\{n\}\right\rangle=\delta\left(n_{1}^{\prime}, n_{1}\right) \delta\left(n_{2}^{\prime}, n_{2}\right) \ldots \delta\left(n_{k}^{\prime}, n_{k}\right) \ldots \\
=\prod_{i=1}^{\infty} \delta\left(x_{i}^{\prime}, n_{i}\right) \quad \begin{array}{l}
\text { Kronecker } \\
\text { delta }
\end{array}
\end{gathered}
$$

- Completeness $\sum_{\{x\}}|\{x\}\rangle\langle\{x\}|=\mathbb{1}$

We have seen creation and annihilation operators twice before.

- a and a^{*} for a harmonic oscillator;

$$
\left[\mathrm{a}, \mathrm{a}^{*}\right]=1
$$

$$
\left|\mathrm{n}>=\left(\mathrm{a}^{\dagger}\right)^{\mathrm{n}}\right| 0>/ \sqrt{ } \mathrm{n}!
$$

- $\mathrm{a}_{\mathbf{k} \sigma}$ and $\mathrm{a}^{\boldsymbol{*}}{ }_{\mathbf{k} \sigma}$ for the photon field;

$$
\left[\mathrm{a}_{\mathrm{k} \sigma}, \mathrm{a}_{\mathbf{k}^{\prime} \sigma^{\prime}}^{\neq}\right]=\delta_{k, k^{\prime}} \delta_{\sigma, \sigma^{\prime}} ;
$$

|multi photon state> $=\left(\mathrm{a}_{\mathbf{k}^{\prime} \sigma^{\prime}}\right)^{\mathrm{n}} \mid$ vacuum $>/ \sqrt{ } \mathrm{n}!$.
Now, for a third time,

- b_{i} and $b^{*}{ }_{i}$ for the boson field.

Now define the quantized field for this boson, in the Schroedinger picture,

$$
\Psi(x)=\sum_{i=1}^{\infty} \Psi_{i}(x) b_{i}
$$

where $\left[b_{i}, b_{j}^{*}\right]=\delta_{i j}$

Annhiblatim and creation operators

$$
\left[b_{i}, b_{j}^{+}\right]=\delta_{i j}
$$

$$
\left[b_{i}, b_{j}\right]=0 \text { and }\left[b_{i}^{+}, b_{j}^{+}\right]=0
$$

(all other CR's are 0)
Note that

$$
\left[\Psi(x), \Psi^{*}\left(x^{\prime}\right)\right]=\delta^{3}\left(x-x^{\prime}\right)
$$

$$
\begin{aligned}
& {\left[\Psi(x), \Psi^{+}\left(x^{\prime}\right)\right]=\sum_{i} \sum_{j^{\prime}}[\underbrace{b_{i}, b_{j}^{+}}_{\delta_{i j}}] \psi_{i}(x) \psi_{j}^{+}(x)} \\
& =\sum_{i^{\prime}} \psi_{i}(x) \psi_{i}^{+}\left(x^{\prime}\right) \\
& =\delta^{3}\left(x-x^{\prime}\right)
\end{aligned}
$$

The wave function of an N boson state

Denote the state by $\mid \alpha>$.
The definition of the wave function is

$$
\begin{aligned}
& \Phi_{a}(\{\mathrm{x}\} ; \mathrm{t})= \\
& \quad<0\left|\mathrm{e}^{\mathrm{itH} / \mathrm{h}} \Psi\left(\mathrm{x}_{1}\right) \Psi\left(\mathrm{x}_{2}\right) \ldots \Psi\left(\mathrm{x}_{\mathrm{N}}\right) \mathrm{e}^{-\mathrm{itH} / \mathrm{h}}\right| \mathrm{a}>
\end{aligned}
$$

(Trick question: Is this the Schroedinger picture or the Heisenberg picture?)

Note that Φ_{a} is not an expectation value.
The N factors of Ψ annihilate the particles, leaving $\mid 0$ >.

Now, what is equation for time evolution?

$$
\begin{aligned}
\underline{H} & =\sum_{[i j]} b_{i}^{+}<i|T| j>b_{j} \\
& +1 / 2 \sum_{[i j k l]} b_{i}^{+} b_{j}^{+}<i j|V| k l>b_{l} b_{k}
\end{aligned}
$$

Be sure to understand that \underline{H} is the Hamiltonian of the field theory ("second quantization"),
which is not the N -particle Hamiltonian, $\mathrm{H}_{\mathrm{N}}=\sum_{\mathrm{k}} \mathrm{T}_{\mathrm{k}}+1 / 2 \sum_{\mathrm{k}, \mathrm{l}}^{\prime} \mathrm{V}\left(\mathrm{x}_{\mathrm{k}^{\prime}} \mathrm{x}_{l}\right)$.
("first quantization").
Theorem.
The second quantized theory is equivalent to the first quantized theory.

Proof
First , let's rewrite the Hamiltonian in terms of the field $\Psi(\mathrm{x})$.

$$
\begin{aligned}
& H=H^{(1)}+H^{(2)} \\
& H^{(1)}=\sum_{i j}\langle i| \tau|j\rangle b_{i}^{+} b_{j} \\
& \overline{\langle i}|T| y\rangle= \\
& =\int \Psi^{+}(\bar{x}) T_{x} \Psi(x) d_{x} \quad=\int \Psi_{i}^{*}(x) T_{x} \psi_{j}(x) d^{3} x \\
& H^{(2)}=\frac{1}{2} \sum_{i_{j}^{\prime} k l} \underbrace{\langle i j| V|k l\rangle}_{\int \psi_{i}^{*}(x) \psi_{j}^{*}\left(x^{\prime}\right) V\left(x, x^{\prime}\right) \psi_{k}(x) \psi_{l}\left(x^{\prime}\right)} b_{i}^{+} b_{j}^{+} b_{l} b_{k} \\
& d^{3} x d^{3} x^{\prime} \\
& =\frac{1}{2} \int \Psi^{+}(x) \Psi^{+}\left(x^{\prime}\right) V\left(x, x^{\prime}\right) \\
& \Psi\left(x^{\prime}\right) \Psi(x) \quad d^{3} x d^{3} x^{\prime}
\end{aligned}
$$

Proof continues
Next, let's consider $\mathrm{N}=1$.

$$
\begin{aligned}
& \Phi_{\alpha}(\vec{x}, t)=\langle 0| e^{i H t / \hbar} \Psi \Psi(\vec{x}) e^{-i(t t / \hbar}|\alpha\rangle \\
& i \hbar \frac{\partial \Phi_{\alpha}}{\partial t}=2 \hbar\langle 0| e^{i(4 t / \hbar} \frac{i}{\hbar}[H, \Psi] e^{-i H t / \hbar}|\alpha\rangle \\
& {\left[H^{(1)}, \Psi\left(x^{\prime}\right)\right]=\int\left[\Psi^{+}\left(x^{\prime}\right) T_{x^{\prime}} \Psi\left(x^{\prime}\right), \Psi(x)\right] d^{3} x^{\prime}} \\
& {[A B, C]=A[B, C]+[A, C] B}
\end{aligned}
$$

Proof continues.

$$
\begin{aligned}
& {\left[H^{(1)}, \Psi(x)\right]=} \int\left\{\Psi^{+}\left(x^{\prime}\right)\left[T \psi\left(x^{\prime}\right), \Psi(x)\right]\right. \\
&\left.+\left[\Psi^{+}\left(x^{\prime}\right), \Psi(x)\right] T \psi\left(x^{\prime}\right)\right\} d_{x}^{\prime} \\
&=\int-\delta^{3}\left(x^{\prime}-x\right) T \psi(x) d^{\prime} x^{\prime}=-T_{x} \Psi(x) \\
& i \hbar \frac{\partial F_{\alpha}}{\partial t}= i \hbar\langle 0| e^{i H t / \hbar}\left(-\frac{i}{\hbar} T_{x} \Psi(x)\right) e^{-i \xi t / / \hbar}|\alpha\rangle \\
&= T_{k} \Phi_{\alpha}(x, t) \quad \text { as } \underline{t} \text { should } \text { he. }
\end{aligned}
$$

Result :
in $\partial \Phi_{\mathrm{a}} / \partial \mathrm{t}=\mathrm{T}_{\mathrm{x}} \Phi_{\mathrm{a}}(\mathrm{x}) ;$
Q.E.D. for $\mathrm{N}=1$

Proof continues.
Now, let's consider $\mathrm{N}=2$.

$$
\begin{aligned}
& \Phi_{\beta}\left(x_{1} x_{2} t\right)=\langle 0| e^{i H t / \hbar} \Psi\left(x_{1}\right) \Psi\left(x_{2}\right) e^{-i H t / \hbar}|\beta\rangle \\
& i \hbar \frac{\partial \Phi_{\beta}}{\partial t}=i \hbar\langle 0| e^{i H t / \hbar} \frac{i}{\hbar}\left[H, \Psi\left(x_{1}\right) \Psi\left(x_{2}\right)\right] e^{-i H t / \hbar}|\beta\rangle \\
& {\left[H^{(1)}, \Psi\left(x_{1}\right) \Psi\left(x_{2}\right)\right]=\left[H^{(1)}, \Psi\left(x_{1}\right)\right] \Psi\left(x_{2}\right)+\Psi\left(x_{1}\right)\left[H^{(1)}, \Psi\left(x_{2}\right)\right]} \\
& =-T_{x_{1}} \Psi\left(x_{1}\right) \Psi\left(x_{2}\right)-\Psi\left(x_{1}\right) T_{x_{2}} \Psi\left(x_{1}\right)
\end{aligned}
$$

So the contribution from $H^{(1)} 5$

$$
\begin{aligned}
& i \hbar \frac{i^{\prime}}{\hbar}(\rightarrow)\left(T_{x_{1}}+T_{x_{2}}\right)\langle 0| e^{i t t / \hbar} \Psi\left(x_{1}\right) \Psi\left(x_{2}\right) e^{-i t t / \hbar}|\beta\rangle \\
& \quad=\left(T_{x_{1}}+T_{x_{2}}\right) \Phi_{\beta}\left(x_{1} x_{2} t\right)
\end{aligned}
$$

Q.E.D. for $N=2$ if $V_{z}=0$

Now the contribution from $H^{(2)} \longrightarrow$
$i \hbar\langle 0| e^{i \forall t / \hbar} \frac{i}{\hbar}\left[H^{(2)}, \Psi\left(x_{1}\right) \Psi\left(x_{2}\right)\right] e^{-i \psi t / \hbar}|\beta\rangle$
Now, $\left[H^{(2)}, \Psi_{1} \Psi_{2}\right]=\left[H^{(2)}, \Psi_{1}\right] \Psi_{2}+\Psi_{1}\left[H^{(2)}, \Psi_{2}\right]$
(A)
(A)

$$
\left.\begin{array}{rl}
{\left[H^{(2)}, \Psi_{1}\right]=} & \int d^{3} \cdot d^{3} x^{\prime} \frac{1}{2} V\left(x, x^{\prime}\right) \tag{B}\\
& {\left[\Psi^{+}(x) \Psi^{+}\left(x^{\prime}\right) \Psi(x) \Psi\left(x^{\prime}\right), \Psi\left(x_{1}\right)\right]}
\end{array}\right] \begin{aligned}
& \vdots \text { Homework Problem } \\
& =\left\{-\Psi^{+}(x) \delta^{3}\left(x^{\prime}-x_{1}\right)-\Psi^{+}\left(x^{\prime}\right) \delta^{3}\left(x-x_{1}\right)\right\} \Psi(x) \Psi\left(x^{\prime}\right)
\end{aligned}
$$

Both terms have Ψ^{+}as the left most factor.
But <o| $\mathrm{TH}^{+}=0$.
(B) $\Psi\left(x_{1}\right)\left[H^{(2)} \Psi\left(x_{2}\right)\right]=\int d^{3} x d^{3} x^{\prime} \frac{1}{2} V\left(x, x^{\prime}\right)$
$* \Psi\left(x_{1}\right)\left\{-\Psi^{+}(x) \delta^{3}\left(x^{\prime}-x_{2}\right)-\Psi^{+}\left(x^{\prime}\right) \delta^{3}\left(x-x_{2}\right)\right\}$
$\Psi(x) \Psi(x)$
Because $\langle 0| \Psi^{+}=0$,
I can replace $\Psi\left(x_{1}\right) \Psi^{+}(x) \rightarrow \delta^{s}\left(x_{1}-x\right)$
and $\Psi\left(x_{1}\right) \Psi^{+}\left(x^{\prime}\right) \rightarrow \delta^{3}\left(x_{1}-x^{\prime}\right)$.
Therefore

$$
\begin{aligned}
& \text { (B) } \left.=i \hbar \frac{i}{\hbar}(-)\langle 0| e^{i H t / \hbar} \int d^{3} \times d^{3} y^{\prime} \frac{1}{2} V\left(x, x^{\prime}\right) \Psi(x) \Psi\left(x^{\prime}\right)\right\} e^{-i H t / \hbar} \\
& \qquad\left\{\delta^{3}\left(x_{1}-x\right) \delta^{3}\left(x_{2}-x^{\prime}\right)+\delta^{3}\left(x_{1}-x^{\prime}\right) \delta^{3}\left(x-x_{2}\right)\right\}|\beta\rangle \\
& =\frac{1}{2} V\left(\left(x_{1}, x_{2}\right) \Phi_{\beta}\left(x_{1} x_{2}\right)+\frac{1}{2} V\left(x_{2} x_{1}\right) \Phi_{\beta}\left(x_{2} x_{1}\right)\right. \\
& =V\left(x_{1}, x_{2}\right) \Phi_{\beta}\left(x_{1}, x_{2}\right)
\end{aligned}
$$

Result :

$$
\begin{aligned}
& \text { iћ } \partial \Phi_{\beta} / \partial \mathrm{t}= \\
& \qquad \begin{array}{r}
\left(\mathrm{T}_{\mathrm{x} 1}+\mathrm{T}_{\mathrm{x} 2}\right) \Phi_{\beta}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \\
+\mathrm{V}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)
\end{array} \Phi_{\beta}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \\
& \\
& \quad \text { Q.E.D. for } \mathrm{N}=2 .
\end{aligned}
$$

By induction...
The second quantized theory is equivalent to the first quantized theory.

If they are equivalent, what is the advantage?

1c. FERMIONS

Start again with the first quantized N body Hamiltonian,

$$
\mathrm{H}=\sum_{\mathrm{k}} \mathrm{~T}_{\mathrm{k}}+1 / 2 \sum_{\mathrm{kl}}^{\prime} \mathrm{V}\left(\mathrm{x}_{\mathrm{k}^{\prime}} \mathrm{x}_{\mathrm{l}}\right)
$$

(T and V would be matrices w. r. t. spin space.)

Now add the antisymmetry of the of the wave function $\Phi\left(\mathrm{x}_{1} \mathrm{x}_{2} \ldots \mathrm{x}_{\mathrm{k}} \ldots \mathrm{x}_{\mathrm{N}} ; \mathrm{t}\right)$,

$$
\begin{aligned}
& \Phi\left(\ldots \mathrm{x}_{k} \ldots \mathrm{x}_{l} \ldots ; \mathrm{t}\right) \\
& \quad=-\Phi\left(\ldots \mathrm{x}_{l} \ldots \mathrm{x}_{k} \ldots ; \mathrm{t}\right) \text { ** }
\end{aligned}
$$

for any pair , k and l; for fermions.
** The exchange of coordinates must also include spin indices, which are suppressed in this notation.

Fermions are easier than bosons because the occupation numbers are more limited:

> For any single-particle state i, n_{i} can only be 0 or 1 .

That's the Pauli exclusion principle. It is a consequence of the antisymmetry of the wave function.
$\ldots \psi_{\mathrm{E}}\left(\mathrm{x}_{k}\right) \ldots \psi_{\mathrm{E}^{\prime}}\left(\mathrm{x}_{l}\right) \ldots$
must be equal to
$-\ldots \psi_{\mathrm{E}}\left(\mathrm{x}_{l}\right) \ldots \psi_{\mathrm{E}^{\prime}}\left(\mathrm{x}_{k}\right) \ldots$
If $E^{\prime}=E$ then the N-body wave function would be 0; i.e., it's not an allowed state.

Theorem.

The anticommutation relations of the fermion field imply that the N -fermion wave function is antisymmetric with respect to interchanges of particle coordinates.
$\underline{\text { Proof. }} \quad \mathrm{A}_{\mathrm{ji}}=<0\left|\ldots \Psi\left(\mathrm{x}_{\mathrm{j}}\right) \ldots \Psi\left(\mathrm{x}_{\mathrm{i}}\right) \ldots\right| \alpha>$
Pull $\Psi\left(\mathrm{x}_{\mathrm{i}}\right)$ to the left.

$$
\Psi\left(\mathrm{x}^{\prime}\right) \Psi\left(\mathrm{x}_{\mathrm{i}}\right)+\Psi\left(\mathrm{x}_{\mathrm{i}}\right) \Psi\left(\mathrm{x}^{\prime}\right)=0
$$

$$
\therefore \Psi\left(\mathrm{x}^{\prime}\right) \Psi\left(\mathrm{x}_{\mathrm{i}}\right)=-\Psi\left(\mathrm{x}_{\mathrm{i}}\right) \Psi\left(\mathrm{x}^{\prime}\right) ;
$$

so pick up a minus sign each time $\Psi\left(\mathrm{x}_{\mathrm{i}}\right)$ moves one step to the left.
\Rightarrow Factor $(-1)^{\mathrm{n}+1}$ when $\Psi\left(\mathrm{x}_{\mathrm{i}}\right)$ is to the left of $\Psi\left(\mathrm{x}_{\mathrm{j}}\right)$.
Then move $\Psi\left(x_{\mathrm{j}}\right)$ to the right.
\Rightarrow Additional factor of $(-1)^{\mathrm{n}}$.
Result:

$$
\mathrm{A}_{\mathrm{ji}}=-\langle 0| \ldots \Psi\left(\mathrm{x}_{\mathrm{i}}\right) \ldots \Psi\left(\mathrm{x}_{\mathrm{j}}\right) \ldots \mid \alpha>=-\mathrm{A}_{\mathrm{ij}}
$$

Homework due Friday, February 5 ...

Problem 13.

(a) Consider the state $c_{i} \ddagger c_{j} \ddagger \mid 0>$, where i and j are labels for single particle states and $\mathrm{c}_{\mathrm{i}}{ }^{\dagger}$ is an electron creation operator. Determine the 2-particle wave function.
(b) Write down a reasonable approximation for the wave function of a helium atom in its ground state.
(c) Verify that the wave function in (b) is antisymmetric under exchange.

$$
\left\{c_{i}, c_{j}\right\}=0 \quad\left\{c_{i} \ddagger c_{j} \ddagger\right\}=0 \quad\left\{c_{i}, c_{j} \ddagger\right\}=\delta_{i j}
$$

