Chapter 3 : GREEN'S FUNCTIONS AND FIELD THEORY (FERMIONS)

Review
We've developed a nice formal theory for describing many-particle systems. But what can we actually calculate?

What would we want to calculate?
(Quantities that can be compared to experimental measurements!)

For realistic theories, we can't calculate anything exactly ---approximations are necessary.
8. WICK'S THEOREM

Wick's theorem is a formal result that will simplify calculations in perturbation theory.

Statement of the theorem
Any time-ordered product of operators can be expressed as the sum of normal-ordered products multiplied by c-number contractions.

$$
\begin{aligned}
& \text { T[ABC ... Z] = N[ABC ... Z] } \\
& +\mathrm{x}_{\mathrm{AB}} \mathrm{~N}[\mathrm{CDE} . . \mathrm{Z}]+\text { similar terms } \\
& +\mathrm{x}_{\mathrm{AB}} \mathrm{x}_{\mathrm{CD}} \mathrm{~N}[\mathrm{EFG} . . . \mathrm{Z}]+\text { similar terms } \\
& + \text { all the rest }
\end{aligned}
$$

Why is that useful?
Because the ground-state expectation value of any normal-ordered product is 0 .

Preliminaries
(to motivate the importance of Wick's theorem)
The Green's function is the ground state expectation value of a certain operator.
(The operator is the time ordered product of two field operators.)

First consider a general problem
Start with the Heisenberg picture, $\left.<0\left|\mathrm{O}_{\mathrm{H}}(\mathrm{t})\right| 0\right\rangle$.
Now write this in the interaction picture (so that we can apply perturbation theory).

$$
\left\langle\Psi_{0}\right| \hat{O}_{H}(t)\left|\bar{\Psi}_{0}\right\rangle /\left\langle\Psi_{0} \mid \Psi_{0}\right\rangle
$$

By the Gelluamn \neq Lon theorem

$$
\frac{\left|\Psi_{0}\right\rangle}{\left\langle\tilde{\Phi}_{0} \mid \tilde{x}_{0}\right\rangle}=\frac{U_{\epsilon}(t=0 ; \pm \infty)\left|\dot{\Phi}_{0}\right\rangle}{\left\langle\hat{\Phi}_{0}\right| V_{\epsilon}(t=0 ; \pm \infty)\left|\tilde{x}_{0}\right\rangle}
$$

so
(and we take the limit $\in \rightarrow 0$)

$$
\begin{gathered}
\frac{\left\langle\varphi _ { 0 } \left(\hat{O}_{0}^{(t)}\left|\Psi_{0}\right\rangle\right.\right.}{\left|\left\langle\Phi_{0} \mid P_{0}\right\rangle\right|^{2}}=\frac{\left\langle\Phi_{0}\right| V_{\epsilon}^{+}(\infty, 0) \hat{O}_{H}^{(t)} V_{\sigma}(0,-\infty)\left|\Phi_{0}\right\rangle}{\left\langle\Phi_{1}\right| V_{\epsilon}(0, \infty)\left|\Phi_{0}\right\rangle^{*}\left\langle\Phi_{0}\right| U_{\epsilon}(0,-\infty)\left|\Phi_{0}\right\rangle} \\
\hat{O}_{H}(t)=V_{0}(0, t) \hat{O}_{\Gamma}(t) U_{\epsilon}(t, 0) \\
U_{\epsilon}^{+}(t, 0) \\
\rightarrow=\left\langle\Phi_{0}\right| U_{\epsilon}(\infty, t) \hat{O}_{I}(t) U_{\epsilon}(t,-\infty)\left|\Phi_{0}\right\rangle / \text { den. } .
\end{gathered}
$$

Recall,

$$
\mathrm{U}_{\varepsilon}\left(\mathrm{t}_{\mathrm{b}}, \mathrm{t}_{\mathrm{a}}\right)=\mathrm{T} \exp \left[-\mathrm{i} / \hbar \int_{\mathrm{ta}}{ }^{\mathrm{tb}} \mathrm{H}_{\mathrm{I}}\left(\mathrm{t}^{\prime}\right) \mathrm{e}^{-\varepsilon\left|\mathrm{t}^{\prime}\right|} \mathrm{dt} \mathrm{t}^{\prime}\right]
$$

Hence,

$$
\begin{aligned}
& <\Psi_{\mathrm{o}}\left|O_{\mathrm{H}}(\mathrm{t})\right| \Psi_{\mathrm{o}}>/<\Psi_{\mathrm{o}} \mid \Psi_{\mathrm{o}}> \\
& =\sum_{\mathrm{v}=\mathrm{o}}^{\infty}(-\mathrm{i} / \hbar)^{v} \quad 1 / \mathrm{v}!\quad \int \mathrm{dt}_{1} \mathrm{e}^{-\varepsilon|\mathrm{t}|} \int \mathrm{dt}_{2} \mathrm{e}^{-\varepsilon|t \mathrm{t}|} \ldots \int \mathrm{dt}_{\mathrm{v}} \mathrm{e}^{-\varepsilon|\mathrm{tv}|} \\
& \qquad<\Phi_{\mathrm{o}}\left|\mathrm{~T}\left[\mathrm{H}_{\mathrm{I}}\left(\mathrm{t}_{1}\right) \mathrm{H}_{\mathrm{I}}\left(\mathrm{t}_{2}\right) \ldots \mathrm{H}_{\mathrm{I}}\left(\mathrm{t}_{\mathrm{v}}\right) \quad O_{\mathrm{I}}(\mathrm{t})\right]\right| \Phi_{\mathrm{o}}>\quad /<\Phi_{\mathrm{o}}|\mathrm{~S}| \Phi_{\mathrm{o}}> \\
& \text { where } \int \mathrm{dt}_{\mathrm{i}} \text { means } \int_{-\infty}{ }^{\infty} .
\end{aligned}
$$

Theatre weill have these gyrators

$$
T\left[\begin{array}{l}
\left.H_{1} H_{1} H_{1} \ldots H_{1}\right]
\end{array} \hat{o}_{I}(t) T\left[H_{1} H_{1} \cdots H_{1}\right]\right.
$$

which we can solace by

$$
T\left[\begin{array}{llll}
H_{1} & H_{1} & \cdots & H_{1}
\end{array} H_{1} \hat{o}_{I}(t)\right]
$$

Similatly for the 1-partich GREEN's FUMCTION

$$
\begin{aligned}
& i G_{\alpha \beta}(x, y)=\frac{\left\langle\Psi_{0}\right| T}{\left\langle\Psi_{0}\left(w_{0}\right\rangle\right.}\left[\psi_{\alpha}(x) \psi_{\beta}^{+}(y)\right]\left|\Psi_{0}\right\rangle \\
& \overline{x=\left(\tilde{x}, t_{x}\right) \text { and } y=\left(\tilde{y}, t_{y}\right)} \\
& =\sum_{\nu=0}^{\infty}\left(\frac{-i}{\hbar}\right)^{\nu} \frac{1}{v!} \int d t_{1} d t_{2} \cdots d t_{\nu} \\
& \quad\left\langle\Phi_{0}\right| T\left[H_{1}\left(t_{1}\right) \psi_{1}\left(r_{2}\right) \ldots \psi_{1}\left(x_{\nu}\right) \psi_{\alpha}(x) \psi_{\beta}^{*}(y)\right]\left|\Phi_{0}\right\rangle
\end{aligned}
$$

\Rightarrow bertarbation expunsion

$$
\begin{aligned}
i G_{\alpha \beta}(x, y) & =\left\{i G_{\alpha \beta}^{0}(x y)\right. \\
& +\left(\frac{-i^{\prime}}{\hbar}\right) \int_{-\infty}^{\infty} d t,\left\langle\Phi_{0}\right| T\left[H_{1}\left(y_{1}\right) \psi_{\alpha}(x) \psi_{f}^{+}(y)\right]\left|\Phi_{0}\right\rangle \\
& +\cdots \cdots\} / \mathrm{den}
\end{aligned}
$$

all the geatros on the R.M.S. are intraction pitive operatios.
So, the problem reduces to calaulation of $\left\langle\Phi_{0}\right| T\left[\psi \psi \ldots \psi \psi \psi^{+} \psi^{+} \ldots \psi^{+}\right]\left|\Phi_{0}\right\rangle$ mi the interaction pidune

Time ordering and normal ordering

 We already know time ordering...$\star \quad \mathrm{T}\left(\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime} \ldots\right)=(-1)^{\mathrm{P}} \times(\mathrm{ABCD} . .$. where $\{A B C D \ldots\}$ are in time order.

Now, what is normal ordering?
Assume (as is usually the case) that the field operator has both annihilation terms and creation terms.

IExample: In relativistic QED, $\psi(\mathrm{x})$ annihilates electrons and creates positrons.

IExample: In the quantum theory of metals, $\psi(\mathrm{x})$ annihilates electrons above the Fermi energy ("particles") and creates "holes" below the Fermi energy.

IExample: In the the nuclear shell model, $\psi(\mathrm{x})$ annihilates nucleons above the filled shells ("particles") and creates holes in the filled shells.

So, we can write
$\psi(\mathrm{x})=\psi^{(+)}(\mathrm{x})+\psi^{(-)}(\mathrm{x})$
= annihilation part plus creation part; note $\psi^{(+)}(\mathrm{x}) \mid \Phi_{0}>=0$.
Also,
$\psi^{\dagger}(\mathrm{x})=\psi^{(+) \dagger}(\mathrm{x})+\psi^{(-) \dagger}(\mathrm{x})$
= creation part plus annihilation part;
note $\psi^{(-) \dagger}(\mathrm{x}) \mid \Phi_{0}>=0$.
\star A product of field operators is in normal order if all the annihilation operators stand to the right of all creation operators.
$\star \quad \mathrm{N}\left(\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \ldots\right)=(-1)^{\mathrm{P}} \times(\mathrm{A} \mathrm{B} \mathrm{C} \mathrm{..)} \mathrm{where}$. $\{A B C \ldots\}$ are in normal order.

Theorem. The expectation value in Φ_{0}, of a normal ordered product , is 0 .

Wick's theorem

T(U V W ... X Y Z)

$=\mathrm{N}(\mathrm{U}$ V W ... X Y Z) + all possible pairs of contractions.

See any quantum field theory textbook for the general proof.

Proof by examples (assuming fermions)

Suppose U V W are annihilation parts at later times than X Y Z which are all creation parts.

Consider

$$
\Xi=\mathrm{T}(\mathrm{U} V \mathrm{~W} \mathrm{XY} \mathrm{Z})=\mathrm{U} \text { V W X Y Z. }
$$

But this is not in normal order.
Move X to the left using the commutation relations.

$\Xi=\mathrm{U} V \mathrm{~W}$ X Y Z = UV ($\{\mathrm{W}, \mathrm{X}\}-\mathrm{XW}) \mathrm{YZ}$

$=-$ UVXWYZ $+c(W, X)$ UVYZ
(the contraction is a c number)
In the first term move X to the left; in the second term move Y to the left.
$\Xi=-(-U X V W Y Z+c(V, X) U W Y Z)$
$+c(W, X)(-U Y V Z+c(V, Y) U Z)$
keep going, always moving creation parts to the left $\Xi=-X U V W Y Z+c(U, X)$ VWYZ
$-c(V, X)(-U Y W Z+c(W, Y) U Z)$
$-c(W, X)(-Y U V Z+c(Y, V) U Z)$
$+c(W, X) c(V, Y)(-Z U+c(U, Z))$
until all the terms are in normal order.
$\Xi=-X Y Z U V W+c(U, X)$ YZVW + many similar $-c(\mathrm{U}, \mathrm{X}) \mathrm{c}(\mathrm{W}, \mathrm{Y}) \mathrm{ZV}+$ many similar $+c(W, X) c(V, Y) c(U, Z)+$ many similar
= N(UVWXYZ) + all possible pairs of contractions.

Now, what are the contractions?
In the interaction picture.,

$$
\begin{aligned}
& \hat{\psi}(\hat{x} t)=\sum_{k \lambda \lambda} \frac{e^{i \vec{k} \cdot \vec{x}}}{\sqrt{\beta}} u_{A} e^{-i u_{k} t}\left[\theta\left(k-k_{F}\right) a_{k \lambda}+\theta\left(a_{F}-k\right) b_{-k \lambda}^{+}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \psi^{(\pm)}\left\{\begin{array} { l }
{ \text { annihilation } } \\
{ \text { creation } }
\end{array} \psi ^ { (\pm) } T \left\{\begin{array}{l}
\text { creation } \\
\text { annihilation }
\end{array}\right.\right. \\
& \text { - }\left\{\psi^{(t)}(x), \psi^{(\pm)}(y)\right\}=0 \quad \text { bechance }\{a, a\}=0 \text {, } \\
& \left\{a, b^{+}\right\}=0,\left\{b^{+}, 4\right\}=0,\left\{b^{+}, b^{+}\right\}=0
\end{aligned}
$$

- $\left\{\psi^{(\pm)}(x),\left.\psi^{(x)}\right|_{y)} ^{\dagger}\right\}=0 \quad$ similarly
- $\left\{\psi^{(t)}(x), \psi^{(-) t}(y)\right\}=0$ beaune $\{a, b\}=0$
- $\left\{\psi^{(-)}(x), \psi^{(t) t}(y)\right\}=0$ because $\left\{b^{t}, a^{+}\right\}=0$
\therefore Thee are osely 2 nonzero contusions.

$$
\begin{aligned}
& c\left(\psi_{\alpha}^{(t)}(x), \psi_{\beta}^{(t)}{ }_{(4)}\right) \\
& =T\left[\psi_{\alpha}^{(H)}(x) \psi_{\beta}^{(H) t}(y)\right]-N\left[\psi_{\alpha}^{(t)}(x) \psi_{\beta}^{(+) t}(y)\right]
\end{aligned}
$$

If $t_{x}>t_{y}$ them

$$
\begin{aligned}
c & \left.=\psi_{\alpha}^{(+)}(x) \psi_{\beta}^{(+)}\right)^{\dagger}(y)+\psi_{\beta}^{(x)}+(y) \psi_{\alpha}^{(+1)}(x) \\
& =i G_{\alpha \beta}^{0}(x, y) \text { for } t_{x}>t_{y} \text { (Horrewrol) }
\end{aligned}
$$

If $t_{x}<t_{y}$ then

$$
\begin{aligned}
c & =-\psi_{\beta}^{(+1 t}(y) \psi_{\alpha}^{(H)}(x)+\psi_{\beta}^{(+) t}(y) \psi_{\alpha}^{(+)}(x) \\
& =0
\end{aligned}
$$

Result

$$
c\left(\psi_{\alpha}^{(+)}(x), \psi_{\beta}^{(+) \dagger}(y)\right)=\left\{\begin{array}{l}
i G_{\alpha \beta}^{0}\left(x_{y}\right) \text { for } t_{x}>t_{y} \\
0 \\
\text { for } t_{x}<t_{y}
\end{array}\right.
$$

and similarly

$$
c\left(\psi_{\alpha}^{(-)}(x), \psi_{f}^{(-)} t(y)\right)= \begin{cases}0 & \text { fri } t_{x}>t_{y} \\ i G_{\alpha \beta}^{0}\left(x_{y}\right) \text { for } t_{x}<t_{y}\end{cases}
$$

THEREFORE

$$
c\left(\psi_{\alpha}(x), \psi_{\beta}^{+}(y)\right)=i G_{\alpha \beta}^{0}(x, y) \quad E_{q}(8.29)
$$

The Wick contraction is equal to the propagator function.

Feynman diagrams

Calculate the Green's function in perturbation theory.

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{iG}_{\alpha \beta}(\mathrm{x}, \mathrm{y})=\left\langle\Phi_{0}\right| \mathrm{T}\left[\psi_{\alpha}(\mathrm{x}) \psi_{\beta} \neq(\mathrm{y})\right] \mid \Phi_{0}>\quad \text { (H. picture) } \\
\quad \mathrm{x} \text { means }\left(\mathrm{t}_{x^{\prime}} \mathrm{x}\right) \text { and y means }\left(\mathrm{t}_{\mathrm{y}}, \mathrm{y}\right) .
\end{array} \\
& =\sum_{v=0}^{\infty}(-\mathrm{i} / \hbar)^{v} 1 / v!\int \mathrm{dt}_{1} \mathrm{dt}_{2} \ldots \mathrm{dt}_{v} \\
& <0\left|\mathrm{~T}\left[\mathrm{H}_{\mathrm{I}}\left(\mathrm{t}_{1}\right) \mathrm{H}_{\mathrm{I}}\left(\mathrm{t}_{2}\right) \ldots \mathrm{H}_{\mathrm{I}}\left(\mathrm{t}_{v}\right) \psi_{\alpha}(\mathrm{x}) \psi_{\beta} \neq(\mathrm{y})\right]\right| 0>
\end{aligned}
$$

$=\sum_{v=0}^{\infty}(-\mathrm{i} / \hbar)^{v} 1 / v!\int d t_{1} \mathrm{dt}_{2} \ldots \mathrm{dt}_{v}$
$\{$ the sum of all complete contractions $\}$
i.e., all Feynman diagrams

Homework Problem due Friday, Feb 19
Problem 21.
The Wick contraction of $\psi_{\alpha}(x)$ and $\psi_{\beta} \ddagger(\mathrm{y})$ is, by Wick's theorem,

$$
\begin{aligned}
& \mathrm{c}\left(\psi_{\alpha}(\mathrm{x}), \psi_{\beta} \ddagger(\mathrm{y})\right) \\
& \quad=\mathrm{T}\left[\psi_{\alpha}(\mathrm{x}) \psi_{\beta} \neq(\mathrm{y})\right]-\mathrm{N}\left[\psi_{\alpha}(\mathrm{x}) \psi_{\beta} \neq(\mathrm{y})\right]
\end{aligned}
$$

Prove:

$$
\mathrm{c}\left(\psi_{\alpha}(\mathrm{x}), \psi_{\beta} \neq(\mathrm{y})\right)=\mathrm{i} \mathrm{G}_{\alpha \beta}^{0}(\mathrm{x}, \mathrm{y})
$$

