The book by Fetter and Walecka is concerned with the application of QFT to many-particle systems.

Relativistic QFT applies to something different:

- . cross sections for collisions
- . field interactions

For today's lecture we'll study an example related to particle interactions (but still using nonrelativistic QFT).

Then we'll return to many-particle systems.

Electron-electron scattering

$>$ at nonrelativistic energies
$>$ calculated using QFT
/1/ The Hamiltonian is $\mathrm{H}=\mathrm{H}_{0}+\mathrm{H}_{1}$.
The free Hamiltonian is

$$
H_{0}=\int \psi^{+}\left(\frac{-\hbar^{2}}{2 m}\right) \nabla^{2} \psi(x) d^{3} x
$$

Set h -bar $=1 . \quad$ At the end of the calculation we can restore the factors of h-bar by dimensional analysis.

The interaction Hamiltonian is

$$
\begin{aligned}
& H_{I}=\frac{1}{2} \int_{\alpha} \psi_{\alpha}^{+}(x) \psi_{\beta}^{+}(y) V(x-y) \psi_{\beta}(y) \psi_{\alpha}(x) d^{3} x d^{3} y \\
& \quad \text { (spin indices, which I will suppress) }
\end{aligned}
$$

where $V(x-y)=e^{2} /|x-y|$
/2/ Kinematic variables; 4 momenta

In the center of mass frame,

$\varepsilon_{1}=\varepsilon_{2}=\varepsilon_{3}=\varepsilon_{4}$. We won't use this now.
/3/ The transition matrix element

Start with the Schroedinger picture,

$$
\begin{aligned}
& |\psi, t\rangle_{S}=e^{-i H\left(t-t_{0}\right)} \underbrace{\left|\psi, t_{0}\right\rangle_{S}}_{e^{-i H_{0} t_{0}}} \quad\left(\psi, t_{0}\right\rangle_{I} \\
& =e^{-i H_{0} t} \underbrace{e^{i H_{0} t} e^{-i H\left(t-t_{0}\right)} e^{-i H_{0} t_{0}}}_{=\hat{U}\left(t, t_{0}\right)}|\psi, t\rangle_{I} \\
& \therefore \quad \text { also, }|\psi, t\rangle_{s}=e^{-i \psi_{0} t}|\psi, t\rangle_{I} \\
& \therefore|\psi, t\rangle_{I}=\hat{U}\left(t, t_{0}\right)\left|\psi, t_{0}\right\rangle_{I}
\end{aligned}
$$

Thus,

$$
\left|\psi, \mathrm{t}>_{\mathrm{I}}=\hat{\mathrm{U}}\left(\mathrm{t}, \mathrm{t}_{0}\right)\right| \psi, \mathrm{t}_{0}>_{\mathrm{I}}
$$

Now remember, $t_{0} \rightarrow-\infty$ and $t \rightarrow+\infty$.
So $\left|\psi, \mathrm{t}_{0}\right\rangle_{\mathrm{I}}=\left|\mathrm{e}_{1}, \mathrm{e}_{2}\right\rangle$
If $\mathrm{H}_{1}=0$ then the interaction picture is the same as the Heisenberg picture.
The transition probability amplitude is

$$
\begin{aligned}
& S=\left\langle e_{3}, e_{4} \mid \psi, t\right\rangle_{I} \\
& =\left\langle e_{3}, e_{4}\right| \hat{U}\left(t, t_{0}\right)\left|e_{1}, e_{2}\right\rangle
\end{aligned}
$$

Now recall,

$$
\hat{\mathrm{U}}\left(\mathrm{t}, \mathrm{t}_{0}\right)=\mathrm{T} \exp \left\{-\mathrm{i} / \hbar \int_{\mathrm{t} 0}{ }^{\mathrm{t}} \mathrm{H}_{\mathrm{I}}\left(\mathrm{t}^{\prime}\right) \mathrm{dt} \mathrm{t}^{\prime}\right\}
$$

where $\mathrm{H}_{\mathrm{I}}\left(\mathrm{t}^{\prime}\right)$ is H_{I} in the interaction picture; i.e., evolving according to H_{0}.

the transition matrix element

Letting $\mathrm{t}_{0} \rightarrow-\infty$ and $\mathrm{t} \rightarrow+\infty$; also, $\mathrm{\hbar}=1$;

$$
\left.S=<e_{3}, e_{4}\left|T \exp \left\{-i \int_{-\infty}^{\infty} H_{I}(t) d t\right\}\right| e_{1}, e_{2}\right\rangle
$$

where all states and operators are in the interaction picture.

Now apply perturbation theory.
Zeroth order $\quad \hat{U}^{(0)}=1$;
$S_{f i}=\langle\mathrm{f}| \hat{\mathrm{U}}^{(0)}|\mathrm{i}\rangle=\delta_{\mathrm{fi}}$; ie., no scattering.
That does not contribute because we are interested in time evolution for which scattering does occur.

First order (or, Leading Order)

$\mathfrak{M}=<\mathrm{e}_{3}, \mathrm{e}_{4}\left|-\mathrm{i} \int_{-\infty}{ }^{\infty} \mathrm{H}_{\mathrm{I}}(\mathrm{t}) \mathrm{dt}\right| \mathrm{e}_{1}, \mathrm{e}_{2}>$
However, there will be some singular equations if we use $t \in(-\infty, \infty)$; so we'll make $t \in(-T, T)$ and later let $T \rightarrow \infty$.
$H_{\mathrm{I}}(\mathrm{t})=1 / 2 \int \mathrm{~d}^{3} \mathrm{x} \mathrm{d}^{3} \mathrm{y} V(\mathrm{x}-\mathrm{y})$

$$
\psi^{\Psi}(\mathrm{x}) \psi^{\Psi}(\mathrm{y}) \psi(\mathrm{y}) \psi(\mathrm{x})
$$

where $x=(x, t)$ and $y=(y, t)$.

$$
\begin{aligned}
& \left.\mathfrak{M}=<e_{3}, e_{4}\left|-i \int_{-T}{ }^{T} H_{\mathrm{I}}(\mathrm{t}) \mathrm{dt}\right| \mathrm{e}_{1}, \mathrm{e}_{2}\right\rangle \\
& \mathrm{H}_{\mathrm{I}}(\mathrm{t})=1 / 2 \int \mathrm{~d}^{3} \mathrm{x} \mathrm{~d}^{3} \mathrm{~V} V(\mathrm{x}-\mathrm{y}) \\
& \psi \Psi(\mathrm{x}) \Psi \Psi(\mathrm{y}) \psi(\mathrm{y}) \psi(\mathrm{x})
\end{aligned}
$$

/5/ Calculation of the matrix element \mathfrak{M}
We could use Wick's theorem, but it'll be easier to go back to first principles.
$\psi(x)=\sum_{p} \phi_{p}(\vec{x}) e^{-i \varepsilon_{p} t} a_{p} \quad(\hbar=1)$ when $\varepsilon_{p}=\frac{\hbar^{2} p^{2}}{2 m}=\frac{p^{2}}{2 m}$
and $\left.\phi_{p}(\vec{x})=\frac{1}{\sqrt{\Omega}} e^{i \vec{p} \cdot \vec{x}} u_{s} \quad \begin{array}{l}\text { spin state } \\ 0\end{array}\right) \operatorname{mor}\binom{0}{1}$

$$
p=(\vec{p}, s) ; \sum_{p}=\sum_{\vec{p}} \sum_{s}
$$

$$
\left.\left.\begin{array}{l}
\psi(y) \psi(x)\left|e_{1}, q_{2}\right\rangle \\
=\psi(y) \psi(x) a_{1}^{+} a_{2}^{+}|0\rangle \quad a_{1}=a\left(\vec{p}_{1}, s_{1}\right) \\
=\left\{\phi_{p_{1}(\vec{x}) e^{-i \varepsilon_{1} t}} \phi_{p_{2}}(\vec{y}) e^{-i \varepsilon_{2} t}\right. \\
-\phi_{p_{2}}(\vec{x}) e^{-i \varepsilon_{2} t} \phi_{p_{1}}(\vec{y}) e^{-i \varepsilon_{1} t}
\end{array}\right\}|0\rangle=0\right\}
$$

Note: $\left\{\psi(x), a_{1}^{+}\right\}=\phi_{p}(\vec{x}) e^{-i \xi, t}$

$$
\begin{gathered}
\left\langle e_{3}, e_{4}\right| \psi^{+}(x) \psi^{+}(y)=\left[\psi(y) \psi(x)\left|e_{3}, e_{4}\right\rangle\right]^{+} \\
=\left\langle 0 \neq\left\{\phi_{p_{3}}^{+}(\bar{x}) e^{i \varepsilon_{3} t} \phi_{p_{4}}^{+}(\vec{y}) e^{i \varepsilon_{4} t}\right.\right. \\
-\phi_{p_{4}}^{+}(\bar{x}) e^{i \varepsilon_{4} t} \phi_{\left.p_{3}(\vec{y}) e^{i \varepsilon_{3} t}\right\}}
\end{gathered}
$$

$$
\begin{aligned}
M= & \frac{-i}{2} \int d^{3} x d^{3} y V(\vec{x}-\vec{y}) \int_{-T}^{T}\left\langle e_{3} e_{4}\right| \psi_{x}^{+} \psi_{y}^{+} \psi_{y} \psi_{x}\left|e_{1} e_{2}\right\rangle d t \\
M= & \frac{-i}{2} \int d^{3} x d^{3} y V(\vec{y}-\vec{y}) \int_{-T}^{T} e^{i\left(\varepsilon_{3}+\varepsilon_{4}-\varepsilon_{1}-\varepsilon_{2}\right) t} d t \\
& {\left[\phi_{p_{3}}^{+}(\vec{x}) \phi_{p_{4}}^{+}(\vec{y})-\phi_{p_{4}}^{+}(\bar{x}) \phi_{k_{3}}^{+}(\vec{y})\right] \text { \& C-number } } \\
& {\left[\phi_{\left.p_{1}(\vec{x}) \phi_{p_{2}}(\vec{y})-\phi_{k_{2}}(\vec{x}) \phi_{k}(\vec{y})\right] \quad \text { wave functions }}\right.}
\end{aligned}
$$

The rest is just mathematics. Remember, $\mathrm{T} \rightarrow \infty$ and $\hbar=1$.
/4/ The time integral

$$
\begin{array}{r}
\int_{-T}^{T} e^{i\left(\epsilon_{f}-\varepsilon_{i}\right) t} d t=\frac{2 \sin \left[\left(\varepsilon_{f}-\varepsilon_{i}\right) T\right]}{\varepsilon_{f}-\varepsilon_{i}} \\
\equiv I(\Delta \varepsilon, T) \quad \text { where } \begin{aligned}
& \Delta \varepsilon=\varepsilon_{f}-\varepsilon_{i} \\
&=\varepsilon_{3}+\varepsilon_{4}-\varepsilon_{1}-\varepsilon_{2}
\end{aligned}
\end{array}
$$

Theorem

$$
\operatorname{limit}_{T \rightarrow \infty} \frac{1}{T} I^{2}(\Delta \varepsilon, T)=4 \pi \delta(\Delta \varepsilon)
$$

We'll need this later.

Note: $\lim _{T \rightarrow \infty} I(\Delta \varepsilon, T)=2 \pi \delta(\Delta \varepsilon)$;
that's consecration of energy $\overline{\Delta \varepsilon \cdot \Delta T \sim} \hbar$
But we need to be careful, because we will need $|\mathrm{m}|^{2} ;[\delta(x)]^{2}$ is undefined. So keep T finite for now.

$$
I^{2}(\Delta \varepsilon, T)=\frac{4 \sin ^{2}(\Delta \varepsilon \cdot T)}{(\Delta \varepsilon)^{2}}
$$

/5/ Finish calculating the transition matrix element

$$
\begin{aligned}
I M=\frac{-i}{2} & \int d^{3} \times d^{3} y V(\vec{y}-\vec{y}) \cdot \mathrm{I}(\Delta \varepsilon, \mathrm{~T}) \\
& {\left[\phi_{p_{3}}^{+}(\vec{x}) \phi_{p_{4}}^{+}(\vec{y})-\phi_{p_{4}}^{+}(\bar{x}) \phi_{\overrightarrow{3}}^{+}(\vec{y})\right] \text { ~C-number } } \\
& {\left[\phi_{p_{1}}(\bar{z}) \phi_{k_{2}}(\vec{y})-\phi_{p_{2}}(\vec{x}) \phi_{k}(\vec{y})\right] \quad \text { Were functions } }
\end{aligned}
$$

First trick is to replace

$$
\phi_{p_{3}}^{+}(x) \phi_{p_{4}}^{+}(y)-\phi_{p_{4}}^{+}(x) \phi_{p_{3}}^{+}(y)
$$

by $\phi_{B_{3}}^{+}(x) \phi_{p_{4}}^{+}(y) \times 2$.
That's become of exchange symnexy:

$$
V(x-y)\left[-\phi_{4}^{+}(x) \phi_{3}^{+}(y)\right]\left[\phi_{1}(x) \phi_{2}(y)-\phi_{2}(x) \phi_{1}(y)\right]
$$

$\downarrow x \leftrightarrow y$ andexhernge Spin indices

$$
\begin{aligned}
& V(y-x)\left[-\phi_{4}^{+}(y) \phi_{3}^{+}(x)\right]\left[\phi_{1}(y) \phi_{2}(x)-\phi_{2}(y) \phi_{1}(x)\right] \\
= & V(x-y) \phi_{3}^{+}(x) \phi_{4}^{+}(y)\left[\phi_{1}(x) \phi_{2}(y)-\phi_{1}(y) \phi_{2}(x)\right]
\end{aligned}
$$

Second trick is to write

$$
V(\vec{x}-\vec{y})=\frac{e^{2}}{|\vec{x}-\vec{y}|}=\int \frac{d^{3} q}{(2 \pi)^{3}} \frac{e^{i \underline{q} \cdot(\vec{x}-\vec{y})}}{q^{2}} 4 \pi e^{2}
$$

That's because

$$
-\nabla^{2}\left(\frac{e^{2}}{r}\right)=4 \pi \sigma^{3}(\vec{r}) \quad e^{2}
$$

Third trick

$$
\begin{aligned}
\int d^{3} x & e^{i \vec{q} \cdot \vec{x}} e^{-i \vec{p}_{3} \cdot \vec{x}} e^{i \vec{p}_{1} \cdot \vec{x}} \\
& =\Omega \delta_{k r}\left(\vec{q} ; \vec{b}_{3}-\vec{p}_{1}\right)
\end{aligned}
$$

periodic boundary conditions

So

$$
\begin{aligned}
& M=\frac{-i}{2} \times 2 \times 4 \pi e^{2} \times I \times \Omega^{2} \frac{1}{(\sqrt{\Omega})^{4}} \\
& \int \frac{d^{3} q}{(2 \pi)^{3}}\left\{\delta_{k_{r}}\left(\vec{q} ; \vec{p}_{3}-\vec{p}_{1}\right) \delta_{K r}\left(-\vec{q} ; \vec{p}_{4}-\vec{p}_{2}\right)\right. \\
& \underbrace{\int}-\delta_{k r}\left(\vec{q} ; \vec{p}_{3}-\vec{p}_{2}\right) \delta_{k r}\left(-\bar{q} ; \vec{p}_{4}-\vec{p}_{1}\right)\} \frac{1}{q^{2}}
\end{aligned}
$$

$$
\begin{gathered}
m=\frac{-i}{2} \times 2 \times 4 \pi e^{2} \times I \times \Omega^{2} \frac{1}{(\sqrt{\Omega})^{4}} \\
\int \frac{d^{3} q}{(2 \pi)^{3}}\left\{\begin{array}{l}
\delta_{k r}\left(\vec{q} ; \vec{p}_{3}-\vec{p}_{1}\right) \delta_{K r}\left(-\vec{q} ; \vec{p}_{4}-\vec{p}_{2}\right) \\
\left.-\delta_{k r}\left(\vec{q} ; \vec{p}_{3}-\vec{p}_{2}\right) \delta_{k r}\left(-\bar{q} ; \vec{p}_{4}-\vec{b}_{1}\right)\right\} \frac{1}{q^{2}} \\
\text { in a finit volume thin should } \\
\text { be } \frac{1}{\Omega} \sum_{\vec{q}} b_{6} \vec{q}=\frac{3 \pi}{L} \vec{n} \\
\delta^{3} \vec{q}=\frac{(2 \pi)^{3}}{\Omega} \delta^{3} n
\end{array}\right.
\end{gathered}
$$

$$
\begin{aligned}
m= & \frac{-i}{\Omega} I(\Delta \varepsilon, T) \delta_{k}\left(\vec{p}_{3}+\vec{p}_{4} ; \vec{p}_{1}+\vec{p}_{2}\right) \\
& \left\{\frac{4 \pi e^{2}}{\left(\overrightarrow{p_{1}}-\vec{p}_{3}\right)^{2}} A-\frac{4 \pi e^{2}}{\left(p_{1}-p_{4}\right)^{2}} B\right\} \\
A= & u_{3}^{+} u_{1} u_{4}^{+} u_{2}=\delta\left(s_{3}, s_{1}\right) \delta\left(s_{4}, s_{2}\right) \\
B= & u_{3}^{+} u_{2} u_{4}^{+} u_{1}=\delta\left(s_{3}, s_{2}\right) \delta\left(s_{4}, s_{1}\right)
\end{aligned}
$$

In relativistic QFT this cares from 2 Feynman diagrams:

Next: Calculate the scattering cross section .

Homework Problem due Friday February 19
Problem 22.
Prove

$$
\lim _{\mathrm{T} \rightarrow \infty} \mathrm{I}^{2}(\Delta \varepsilon, \mathrm{~T}) / \mathrm{T}=4 \pi \delta(\Delta \varepsilon)
$$

where

$$
\mathrm{I}(\Delta \varepsilon, \mathrm{~T})=\int_{-\mathrm{T}}^{\mathrm{T}} \exp [\mathrm{i}(\Delta \varepsilon) \mathrm{t}] \mathrm{dt}
$$

