Electron-electron scattering, in the LO of perturbation theory, at low energies.

$$
\begin{aligned}
m= & \frac{-i}{\Omega} I(\Delta \varepsilon, T) \delta_{k r}\left(\overrightarrow{p_{3}}+\vec{p}_{4} ; \vec{p}_{1}+\vec{p}_{2}\right) \\
& \left\{\frac{4 \pi e^{2}}{\left(\overrightarrow{p_{1}}-\overrightarrow{p_{3}}\right)^{2}} A-\frac{4 \pi e^{2}}{\left(\overrightarrow{p_{2}}-\overrightarrow{\vec{p}_{3}}\right)^{2}} B\right\} \\
A= & u_{3}^{+} u_{1} u_{4}^{+} u_{2}=\delta\left(s_{3}, s_{1}\right) \delta\left(s_{4}, s_{2}\right) \\
B= & u_{3}^{+} u_{2} u_{4}^{+} u_{1}=\delta\left(s_{3}, s_{2}\right) \delta\left(s_{4}, s_{1}\right)
\end{aligned}
$$

In relativistic QFT this comes from 2 Feynman diagrams:

Next : Calculate the scattering cross section.
/6/ The transition probability
The transition probability for $\mathrm{i} \rightarrow \mathrm{f}$ is

$$
\delta \mathrm{P}_{\mathrm{fi}}=|\langle\mathrm{f} \mid \mathrm{i}\rangle|^{2} \approx|\mathfrak{M}|^{2}
$$

(Born approximation)
So next we need to calculate

$$
\delta P=|\mathfrak{M}|^{2} .
$$

$$
\begin{aligned}
= & \frac{I^{2}}{\Omega^{2}}\left(4 \pi e^{2}\right)^{2} \delta_{k_{y}}\left(\vec{p}_{f}, \vec{p}_{i}\right) \times \\
& \times\left\{\frac{A^{2}}{\left|\vec{p}_{1}-\vec{p}_{3}\right|^{4}}+\frac{B^{2}}{\left|\vec{p}_{1}-\vec{r}_{y}\right|^{4}}-\frac{2 A B}{\left(\vec{p}_{1}-\vec{\rightharpoonup}_{3}\right)^{2}\left(\vec{p}_{1}-\vec{r}_{4}\right)^{2}}\right\}
\end{aligned}
$$

/7/ Unpolarized scattering
Sum over the final spins (s_{3} and s_{4}); average over the initial spins (s_{1} and s_{2}).

$$
\begin{aligned}
& A^{2}=\delta_{k}\left(s_{3}, s_{1}\right) \delta_{k}\left(s_{4}, s_{2}\right) \\
& \overline{A^{2}}=\frac{1}{2} \sum_{s_{1}} \frac{1}{2} \sum_{\delta_{2}} \sum_{s_{3}} \sum_{s_{4}} A^{2} \\
& =\frac{1}{4} \sum_{s_{1}} \sum_{\beta_{3}} \delta_{k}\left(s_{3}, s_{1}\right) \sum_{s_{2}} \sum_{s_{4}} \delta_{k}\left(s_{4}, s_{2}\right) \\
& =\frac{1}{4} 22=1 \\
& \overline{B^{2}}=\frac{1}{4} \sum_{s_{1} s_{2} s_{3} s_{4}} \delta_{5}\left(s_{3}, s_{2}\right) \delta_{k}\left(s_{4}, s_{1}\right) \\
& =1 \\
& \overline{A B}=\frac{1}{4} \sum_{s_{1} \varepsilon_{2} s_{5} s_{4}} \delta\left(s_{3}, s_{1}\right) \delta\left(s_{1} s_{4}, s_{2}\right) \\
& \delta_{k}\left(s_{3}, s_{2}\right) \delta_{k}\left(s_{4}, s_{1}\right) \\
& =\frac{1}{4} \sum_{1} s_{2} \delta_{1}\left(s_{2} s_{1}\right) \delta_{k}\left(s_{2} s_{1}\right) \\
& =\frac{1}{4} 2=1 / 2
\end{aligned}
$$

$$
\begin{aligned}
& (\delta p)_{\text {uxpol }}=\frac{I^{2}}{\Omega^{2}}\left(4 \pi e^{2}\right)^{2} \delta_{K}\left(\vec{P}_{f}, \vec{P}_{1}\right) \\
& \left\{\frac{1}{\left|\vec{r}_{1}-\vec{p}_{3}\right|^{4}}+\frac{1}{\left|\vec{p}_{1}-\vec{p}_{4}\right|^{4}}-\frac{1}{\left(\overrightarrow{\left.p_{1}-\vec{b}_{3}\right)^{2}\left(\vec{p}_{1}-\vec{r}_{4}\right)^{2}}\right\}}\right.
\end{aligned}
$$

/8/ The scattering cross section, in the center of mass frame of reference Recall the definition of cross section:

$$
\sigma=\text { transition rate / incident flux }
$$

We have transition rate $=\delta \mathrm{P} / 2 \mathrm{~T}$
(Remember: time $\in(-T, T)$ and eventually we'll take the limit $\mathrm{T} \rightarrow \infty$.)
and
incident flux $=$ \# of particles $/ \delta \mathrm{A} / \delta \mathrm{t}$ \# of particles = density * volume
density $=1 / \Omega$
(one particle in the volume Ω) volume $=$ the volume of particles passing area $\delta \mathrm{A}$ in time $\delta \mathrm{t}$ $=\delta \mathrm{A} v \delta \mathrm{t}$;
in the center of mass frame, replace v by $\mathrm{v}_{\text {relative }}=\mathrm{v}-(-\mathrm{v})=2 \mathrm{v}$; so,

$$
\begin{aligned}
\delta \sigma & =\frac{\delta \mathrm{P} / 2 \mathrm{~T}}{(1 / \Omega)(2 \mathrm{v} \delta \mathrm{~A} \delta t) /(\delta \mathrm{A} \delta \mathrm{t})} \\
& =\frac{\Omega \delta \mathrm{P}}{4 \mathrm{Tv}}
\end{aligned}
$$

$$
\begin{aligned}
d \sigma_{\text {umpol }}= & \frac{\Omega}{4 T v} \frac{\Gamma^{2}}{\Omega^{2}}\left(4 \pi e^{2}\right)^{2} \delta_{k}\left(\overrightarrow{p_{3}}+\vec{p}_{4}-\vec{b}_{1}-\vec{p}_{2}\right) \\
& \left\{\frac{1}{\left|\overrightarrow{p_{1}}-\overrightarrow{p_{3}}\right|^{4}}+\frac{1}{\left|\overrightarrow{p_{1}}-\vec{p}_{4}\right|^{4}}-\frac{1}{\left(\overrightarrow{\left.\vec{p}_{1}-\overrightarrow{b_{3}}\right)^{2}\left(\overrightarrow{p_{1}}-\overrightarrow{p_{4}}\right)^{2}}\right.}\right\}
\end{aligned}
$$

We'll calculate the center-of-mass cross section

$$
\begin{aligned}
& \vec{p}_{1}=0,0, p \\
& \vec{p}_{2}=0,0,-p \\
& \vec{p}_{3}=p \sin \theta, 0, p \cos \theta \\
& \vec{p}_{4}=-p \sin \theta, 0,-p \cos \theta
\end{aligned}
$$

$$
\begin{aligned}
d \sigma_{\text {umpol }}= & \frac{4 \pi \delta\left(\varepsilon_{f}-\varepsilon_{i}^{\prime}\right)\left(4 \pi e^{2}\right)^{2}}{4 v^{4} 4 p^{4}} \frac{d^{3} \beta_{3}}{(2 \pi)^{3}} \\
& \left\{\frac{1}{(1-\cos \theta)^{2}}+\frac{1}{(1+\cos \theta)^{2}}-\frac{1}{(1-\cos \theta)(+\cos \theta)}\right\}
\end{aligned}
$$

Various ingredients ...

$$
\left.\left.\begin{array}{ll}
\sum_{\vec{p}_{4}} \delta_{K}\left(\vec{p}_{f}-\vec{p}_{i}\right) & (\ldots)=(\ldots) \mid \\
\sum_{\vec{p}_{3}}=\vec{p}_{1}+\vec{p}_{2}-\vec{p}_{3}
\end{array}\right] \frac{\Omega}{(2 \pi)^{2}} d^{3} p_{3} \quad \begin{array}{c}
\text { (perindic } \\
\text { boundary } \\
\text { anditins) }
\end{array}\right)
$$

$$
\begin{aligned}
\left(\vec{p}_{1}-\vec{p}_{3}\right)^{2} & =p^{2} \sin ^{2} \theta+p^{2}(1-\cos \theta)^{2} \\
& =2 p^{2}(1-\cos \theta) \\
\left(\vec{p}_{1}-\vec{p}_{4}\right)^{2} & =p^{2} \sin ^{2} \theta+p^{2}(1+\cos \theta)^{2} \\
& =2 p^{2}(1+\cos \theta)
\end{aligned}
$$

We must integrate over $\left|\vec{p}_{3}\right|$,

$$
\begin{gathered}
\quad d^{3} p_{3}=p_{3}^{2} d p_{3} d \Omega_{3} \\
\left(\frac{d \sigma}{d \Omega}\right)_{u n p l}=\frac{4 \pi\left(4 v e^{2}\right)^{2}}{1 \sigma(2 \pi)^{3}} \int \frac{p_{3}^{2} d p_{3}}{v p^{4}} \delta\left(\varepsilon_{f}-\varepsilon_{i}\right) \\
\{\theta \text { dependence }\}
\end{gathered}
$$

The every integral: evaluate carefully!

$$
v=\frac{p}{m} \text { and } \varepsilon_{i}=\frac{p^{2}}{2 m} \times 2
$$

$$
\text { and } \varepsilon_{f}=\frac{p_{3}^{2}}{2 m} \times 2 \quad p_{3}^{2}=m \varepsilon_{f}
$$

$$
\begin{aligned}
& \int \frac{p_{3}^{2} d p_{3}}{v p^{4}} \delta\left(\varepsilon_{f}-\varepsilon_{l}^{\prime}\right)=\int \frac{\left(m \varepsilon_{f}^{1 / 2}\right.}{(p / m) p^{4}} \frac{1}{2} m d \varepsilon_{f} \delta\left(\varepsilon_{f}-\varepsilon_{1}^{\prime}\right) \\
& =\frac{p m}{2(p / m) p^{4}}=\frac{m m^{2}}{2 p^{4}}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\frac{d \sigma}{d \Omega}\right)_{\text {unpol }}=\frac{e^{4}}{2} \frac{m^{2}}{2 p^{4}}\{\theta \text { dependence }\} \\
& p^{2}=\varepsilon_{i} m \\
& =\frac{e^{4}}{4 \varepsilon_{i}^{2}}\left\{\frac{1}{(1-\cos \theta)^{2}}+\frac{1}{(1+\cos \theta)^{2}}-\frac{1}{1-\cos ^{2} \theta}\right\} \\
& \varepsilon_{i}=\varepsilon_{1}+\varepsilon_{2}=\text { total energy } \\
& \text { in the center of muss frame. }
\end{aligned}
$$

These calculations were done with h-bar=1.
Now we need to restore the factor of h-bar to get the correct units.
e^{4} / E^{2} has units of area, so the factor of h-bar is (h-bar)^0; ie., no h-bar factor needed.

The cross section for e e scattering，at low energies，in the center of mass frame of reference is
$(\mathrm{d} \sigma / \mathrm{d} \Omega)_{\text {unpol．}}=$

$$
\frac{e^{4}}{4 \mathrm{E}^{2}}\left\{\frac{1}{(1-\cos \theta)^{2}}+\frac{1}{(1+\cos \theta)^{2}}-\frac{1}{1-\cos ^{2} \theta}\right\}
$$

$E=$ total initial kinetic energy in the center of mass frame； $E=2 * p^{2} /(2 m)$

Recall the Rutherford cross section（SI units）

$$
\frac{d \sigma}{d \Omega}=\left(\frac{Z_{1} Z_{2} e^{2}}{8 \pi \epsilon_{0} m v_{0}^{2}}\right)^{2} \csc ^{4}\left(\frac{\Theta}{2}\right)
$$

ie．，$e^{4} /\left(16 E_{1}^{2}\right) * 4 /(1-\cos \theta)^{2}$ in Gaussian units， with $Z_{1}=Z_{2}=1$ ．（lab frame）

畂he cross section for ede scattering is a symmetric function of θ－symmetric about $\theta=\pi / 2 —$ because the two particles are identical．田 Note the destructive interference！

Waves of Probability are Indistinguishable

Moller scattering cross section from relativistic Q.E.D.
$\frac{d \sigma}{d \Omega}=a_{0}\left(a_{1}+a_{2}+a_{3} a_{4}\right)$

In these equations,
I $\quad \alpha=$ the fine structure constant
I $\mathrm{E}=$ the total (relativistic!) energy in the center of mass frame $\left(E_{1}+E_{2}\right)$
I $\hbar=1$ and $c=1$
I $\theta=$ the center of mass scattering angle

$$
\begin{aligned}
& a_{0}=\frac{\alpha^{2}\left(2 E^{2}-m^{2}\right)^{2}}{4 E^{2}\left(E^{2}-m^{2}\right)^{2}} \\
& a_{1}=\frac{4}{\sin ^{4} \theta} \\
& a_{2}=-\frac{3}{\sin ^{2} \theta} \\
& a_{3}=\frac{\left(E^{2}-m^{2}\right)^{2}}{\left(2 E^{2}-m^{2}\right)^{2}} \\
& a_{4}=1+\frac{4}{\sin ^{2} \theta}
\end{aligned}
$$

Homework Problem due Friday, February 19

Problem 23.

Use computer graphics.
(a) Plot the Møller cross section $\mathrm{d} \sigma / \mathrm{d} \Omega(\mathrm{E}, \theta)$ as a function of θ, for $E=1.05 \mathrm{MeV}, 1.2 \mathrm{MeV}$ and 2.0

$$
\begin{aligned}
& \mathrm{m}_{\mathrm{e}}=0.511 \mathrm{MeV} / \mathrm{c}^{2} \\
& 0.511+0.511=1.022
\end{aligned}
$$ the center of mass frame; $\theta=$ the center of mass scattering angle. Put all three functions on the same plot by making a logarithmic plot.

(b) Similarly, plot the low-energy approximation that was derived in class, for the same three values of E. Does the low-energy approximation agree with the Møller cross section at low energies?

Plot θ in degrees from 0 to 180. Plot $\mathrm{d} \sigma / \mathrm{d} \Omega$ in mb (millibarns). Use a logarithmic axis for the cross section. Use an appropriate range for the vertical axis.

