Forget about particles.

What are the fields?

What equations govern the fields?

- ★ We always start with a classical field theory.
- ★ The field equations come from Lagrangian dynamics.

Today's example: The Lagrangian for the Schroedinger equation.

Review of Lagrangian dynamics

```
For a single coordinate q(t) :
```

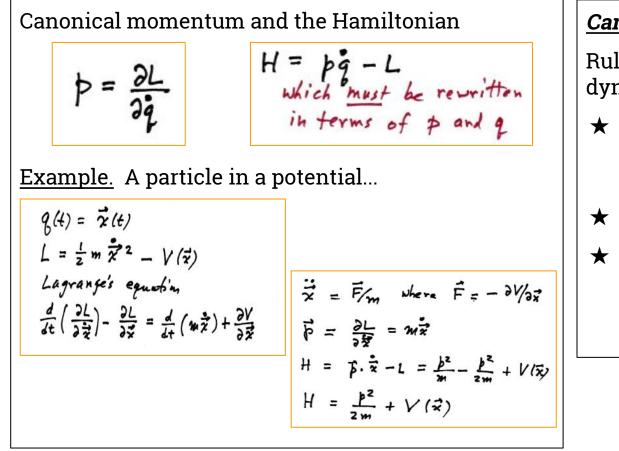
Lagrangian L = L (q, dq/dt);

and Action A = $\int_{t1}^{t2} L(q, dq/dt) dt$.

The equation of motion for q(t) comes from the requirement that $\delta A = 0$ (with endpoints fixed); i.e., the action is an extremum. For a variation $\delta q(t)$

$$\begin{split} \delta A &= 0 = \int_{t_1}^{t_2} \left[-\frac{\partial L}{\partial q} \, \partial q + \frac{\partial L}{\partial \dot{q}} \frac{d}{\partial t} (\delta q) \right] dt \\ &= \int_{t_1}^{t_2} \left[-\frac{\partial L}{\partial \dot{q}} - \frac{d}{\partial t} \left(\frac{\partial L}{\partial \dot{q}} \right) \right] \delta g \, dt \\ &= \int_{t_1}^{t_2} \left[-\frac{\partial L}{\partial \dot{q}} - \frac{d}{\partial t} \left(\frac{\partial L}{\partial \dot{q}} \right) \right] \delta g \, dt \\ &= \int_{t_1}^{t_2} \left[-\frac{\partial L}{\partial \dot{q}} - \frac{d}{\partial t} \left(\frac{\partial L}{\partial \dot{q}} \right) - \frac{\partial L}{\partial \dot{q}} = 0 \end{split}$$

(Lagrange's equation)



Canonical Quantization (Dirac)

Rules to convert classical dynamics to a quantum theory:

- q and p become operators;
 they operate on the Hilbert space of physical states.
- ★ [q,p]=iħ
 - H is the generator of translation in time.

Theorem.

H is the generator of translation in time for the quantum theory. Suppose L = $\frac{1}{2}$ M (dq/dt)² – V(q).

 $H = \frac{p^2}{2m} + V(g)$ · ÷ [H,9] = ÷ ÷ [],9] = 1 { | [P, 8] + [N,8] P} $=\frac{1}{2m+1}(-i\hbar p)_2$ $= P_m = dq/dt$ · = [+, p] = = [V(g), p] $= \frac{1}{h} \frac{1}{h} \frac{\partial V}{\partial g} = -\frac{\partial V}{\partial g} = dp/dt$ O.E.D. So far, we have considered only one degree of freedom. Now consider a system with many degrees of freedom; { q_i : i = 1 2 3 ... D }

For many degrees of freedom...

 $q(t) \rightarrow Q(t) \equiv \{ q_i(t) ; i = 1 \ 2 \ 3 \ \dots \ i \ \dots \ N \}$

• L = L(Q, dQ/dt) \Rightarrow Lagrange's equations

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}_{i}}\right) - \frac{\partial L}{\partial q_{i}} = 0$$

Canonical momentum...

and Hamiltonian...

$$H = \sum_{i=1}^{N} p_i q_i - L$$

(which must be re-expressed in terms of $\textbf{p}_1...\textbf{p}_N$ and $\textbf{q}_1...\textbf{q}_N$.)

Classical field theory (suppress spin for now) We replaced discrete $\mathbf{q}(\mathbf{t}) \rightarrow \{ \mathbf{q}_{i}(\mathbf{t}) ; i \in \mathbf{Z} \};$ Now replace $q(t) \rightarrow \{ \psi(\mathbf{x}, t) ; \mathbf{x} \in \mathbb{R}^3 \}$; continuum L = L($\psi(\mathbf{x},t), \partial \psi(\mathbf{x},t)/\partial t$) L = $\int \mathfrak{L}(\psi(\mathbf{x},t), \nabla \psi(\mathbf{x},t), \partial \psi(\mathbf{x},t)/\partial t) d^3x$ Lagrange's equation ---- $\frac{d}{dt}\left(\frac{\delta L}{\delta \psi(x)}\right) - \frac{\delta L}{\delta \psi(x)} = 0$ functional derivatives; $\frac{d}{dt}\left(\frac{\partial \mathcal{L}}{\partial \dot{w}(x)}\right) - \frac{\partial \mathcal{L}}{\partial w(x)} = 0$ partial derivatives;

this is the *"classical field theory."* Mathematically it's an example continuum dynamics.

THE LAGRANGIAN FOR SCHROEDINGER WAVE MECHANICS $A = \int_{t_1}^{t_2} dt \int_{d^3x} \left\{ \frac{-i\hbar}{2} \left(\frac{\partial \mathcal{U}^*}{\partial t} \mathcal{U} - \mathcal{U}^* \frac{\partial \mathcal{U}}{\partial t} \right) \right\}$ - #2 Vy+. V4 - V4+4 } Note: A is real. But 4(x) is complex. We could write 4 = R + i I and treat R and I as independent "generalized Goordinates." ⇒ SR and SI variations. W/ SA=0. Easier, and equivalent, treat of and 1/* as independent "generalized coordinates" => 54 and 54+ variations w/ 5A=0.

Lagrange's Equations

$$A = \int_{t_1}^{t_2} dt \int d^3x \left\{ \frac{-i\frac{t}{2}}{2} \left(\frac{\partial \Psi^*}{\partial t} \psi - \psi^* \frac{\partial \Psi}{\partial t} \right) \right. \\ \left. - \frac{\hbar^2}{2m} \nabla \Psi^* \cdot \nabla \psi - \psi^* \psi \right\}$$

$$Vary A w.r.t. \Psi^* keeping \Psi fixed
$$\delta A = \int_{t_1}^{t_2} dt \int d^3x \left\{ \frac{-i\frac{t}{2}}{2} \left[\frac{\partial}{\partial t} (\delta \Psi^*) \psi - \delta \psi^* \frac{\partial \Psi}{\partial t} \right] \right. \\ \left. - \frac{\hbar^2}{2m} \nabla \delta \Psi^* \cdot \nabla \psi - V \delta \psi^* \psi \right\}$$

$$Interate by kerts j the surface terms are 0.
$$(b/c \quad \delta \Psi^* = 0 \text{ at } t_1 \text{ and } t_2 \text{ j and } \psi^* = 0 \text{ at } \infty.)$$

$$dA = \int_{t_1}^{t_2} dt \int d^3x \left\{ \frac{+\frac{\hbar^2}{2}}{2m} \delta \psi^* (\nabla^2 \psi) - V \delta \psi^* \psi \right\}$$

$$i\frac{\hbar^2}{2m} \delta \psi^* (\nabla^2 \psi) - V \delta \psi^* \psi$$$$$$

The other Lagrange quation, from

$$\delta \psi(x)$$
 keeping 4+ fixed, is
 $-i\frac{1}{2t}\frac{\partial\psi}{\partial t} = -\frac{1}{2m}\varphi^2 \psi^2 + V\psi^*$

Thus, the classical field equation is the Schroedinger equation. Canonical momenta $\mathcal{T}(x) = \frac{\delta \mathcal{L}}{\delta \dot{\psi}(x)} = \frac{\Im \mathcal{L}}{\Im \dot{\psi}(x)} = \frac{i\hbar}{2} \psi^{*}_{(x)}$ $\mathcal{T}^{*}(x) = \frac{\delta \mathcal{L}}{\delta \dot{\psi}^{*}_{(x)}} = -\frac{i\hbar}{2} \psi_{(x)}$

The Hamiltonian

$$\begin{aligned} H &= \int d^{3}x \left(\Pi \dot{\psi} + \pi^{*} \dot{\psi}^{*} \right) - L \\ &= \int d^{3}x \left\{ \begin{array}{c} \frac{i}{2} & \psi^{*} \dot{\psi} - \frac{i}{2} & \psi^{*} \dot{\psi} \\ &+ \frac{i}{2} & \psi^{*} \dot{\psi} - \frac{i}{2} & \psi^{*} \dot{\psi} \\ &+ \frac{1}{2} & \psi^{*} \dot{\psi} - \frac{i}{2} & \psi^{*} \dot{\psi} \\ &+ \frac{1}{2} & \psi^{*} \cdot \nabla \psi + V \psi^{*} \dot{\psi} \\ &= \int d^{3}x \left\{ \begin{array}{c} \frac{1}{2} \\ \frac{1}{2m} \end{array} \right. \nabla \psi^{*} \cdot \nabla \psi + V \psi^{*} \dot{\psi} \\ &+ V \psi^{*} \dot{\psi} \\ &= \int d^{3}x \left\{ \begin{array}{c} \frac{1}{2} \\ \frac{1}{2m} \end{array} \right. \nabla \psi^{*} \cdot \nabla \psi + V \psi^{*} \dot{\psi} \\ &+ V \psi^{*} \dot{\psi} \\ &= \int d^{3}x \left\{ \begin{array}{c} \frac{1}{2} \end{array} \right\} \end{aligned}$$

<u>Quantization</u>

So far, this is the classical field theory. Now...

Dirac's canonical commutation relation [q,p] = ih is valid for Hermitian operators q and p. We need to change that (because ψ is complex) to

$$[\Psi(x), \Pi(x)] = \frac{2h}{2} \delta^{3}(x-x) \text{ where } \Pi = \frac{2h}{2} \psi^{\dagger}$$

$$[\Psi^{\dagger}(x), \Pi^{\dagger}(x)] = \frac{2h}{2} \delta^{3}(x-x)$$

Therefore

$$[\Psi(x), \Psi^+(x)] = \delta^3(x-x')$$

 $[\Psi(x), \Psi(x)] = 0$

Or, replace these by *anticommutators* for fermions.

Summary

$$[\psi(\mathbf{x}), \psi(\mathbf{x'})] = 0$$

 $[\psi(\mathbf{x}), \psi^{\dagger}(\mathbf{x'})] = \delta^{3}(\mathbf{x}-\mathbf{x'}) ;$

or, use anticommutators for fermions;

$$H = \int d^3x \left\{ \frac{b^2}{2m} \nabla \psi^{\dagger} \cdot \nabla \psi + V \psi^{\dagger} \psi \right\}$$

This is precisely the NRQFT that we have been using, but with a 1-body potential V(\mathbf{x}) and without a 2-body potential V₂ (\mathbf{x} , \mathbf{y}).

Exercise: Figure out the Lagrangian that would include a 2-body potential. Hint: The Lagrangian must include a term quartic in the field.

Exercise: Verify that H is the generator of translation in time, in the quantum theory.

Homework Problems due Wednesday March 2

Problem 30. Equal time commutation relations. We have, in the Schroedinger picture,

1

$$[\psi(\mathbf{x}), \psi^{\mathsf{T}}(\mathbf{x'})] = \delta^{3}(\mathbf{x}-\mathbf{x'})$$

etc.

(a) Show that in the Heisenberg picture, this commutation relation holds at all equal times.(b) What is the commutation relation for different times?

Problem 31.
(a) Do problem 2.1 in Mandl and Shaw.
(b) Do problem 2.2 in Mandl and Shaw.
(c) Do problem 2.3 in Mandl and Shaw.