
Mandl and Shaw, Chapter 4
Notations, conventions and units
Section 1.2: RATIONALIZED gaussian

electromagnetic units
Section 2.1: Relativity notations
Section 6.1: Natural units

The Dirac Equation
(Chapter 4; Appendix A)

/1/ Recall the Schroedinger equation

The plane wave solutions

Ψ(x,t) = C ei( p.x − E t )  (ħ = 1)

H Ψ = E Ψ  ⇒  E = p2 /2m      (nonrelativisic)

P = – i ∇,    so    P Ψ = p Ψ(x,t ).

The plane wave is an eigenstate of 
momentum.
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To be consistent with relativity,
t and ( x, y, z ) should be treated 
similarly;
because the Lorentz transformations 
mix t and ( x, y, z ).So let’s try

 i ∂Ψ/∂t  = ( α.P + βm ) Ψ 
 
...with ( α.P + βm )2 = P2 + m2

The quantities β and ( αx , αy  , αz  ) will be 
matrices.

Now try
Ψ(x,t) ∝ ei( p.x − Et ) u
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/2/ The Dirac equation
We want an equation that is (i) linear in 
time, (ii) with plane wave solutions,
(iii) such that E = 

Ψ(x,t) ∝ ei( p.x − Et ) 

 i ∂Ψ/∂t = H Ψ

Should we try 

H Ψ =                   Ψ

i.e., H =                     ?

But that is a nonlocal operator. 

√ p2+m2 

√ p2+m2 

√ P2+m2 



Four - vector notations (Appendix A)
Define    ɣ0 = β;
also,      ( ɣ1 , ɣ2 , ɣ3 ) = ( βαx , βαy , βαz )

UPPER AND LOWER INDICES:
{x0 , x1 , x2 , x3 } = { ct, x , y, z}          ( c = 1 )
{x0 , x1 , x2 , x3 } = { ct, −x , −y, −z}
gμν  = diag(1,−1,−1,−1)

{ɣ0 , ɣ1 , ɣ2 ,ɣ3 } =  β { 1 , αx , αy , αz  }
{ɣo , ɣ1 , ɣ2 ,ɣ3 } =  β { 1 , −αx , −αy , −αz  }
ɣ . A = ɣμ Aμ = ɣμ A

μ = ɣ0 A0− ɣi Ai

β and ( αx , αy  , αz  ) 

Since they don’t commute, they must be 
matrices.
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/3/ The gamma matrices
What are the gamma matrices?
They are not unique.

The gamma matrices are 4 X 4 matrices, 
defined by certain anticommutation 
relations:

Thus, the defining equation is

{ γμ , γν } = 2 gμν (★)
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That is the Dirac equation.

Various notations may be used

−



Theorem. If { γμ , γν } = 2 gμν , and U is a 
unitary matrix (U♰U = 1), then
{ γ′ μ , γ′ ν } = 2 gμν  where γ′ μ  =  U γμ U♰ .

Proof.

Exercise. Find U such that

γM
μ = U γμ U♰ .

⊟   The standard representation (“Dirac 
rep.”) for the gamma matrices is 

Exercise. Verify (★).

⊟   The Majorana representation

which is sometimes convenient.
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(Peskin and Schroeder use yet a different representation.)

(we never raise 
the index on the 
Pauli matrices!)



For most calculations, we don’t need to use 
any specific representation of the gamma 
matrices. Instead we can use some identities 
that are true for all representations.

{ γμ , γν } = 2 gμν (★)

/4/ Examples of gamma matrix identities

∎   Trace ( γμ γν )

Lemma. Trace(BA) = Trace(AB).

Proof.
Trace(BA) = Brs Asr = Asr Brs = Trace(AB).
Even if A and B do not commute,
i.e.,  BA ≠ AB, always Tr(BA) = Tr(AB). 

∎ Trace ( γµ γν γρ γσ )
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∎  γμ γρ γμ

Etc.

We’ll use many such identities.
See the Appendix ; A.2 and A.3.
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▶  In the standard (Dirac) representation:/5/ The Dirac spinors 
▶  Plane wave solutions of the Dirac equation
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Normalization choice
This can be done in different ways.
We’ll follow Mandl and Shaw ; eq. (A.27) ;

ur
♰(p) us(p)  =  ―  δrs      w/   r and s ∊ {1,2}

vr
♰(p) vs(p)  =  ―  δrs     w/   r and s ∊ {1,2}

Also, define  u = u♰ γ0   and   v = v♰ γ0 ;

Then

ur(p) us(p)  =   δrs and vr(p) vs(p)  =  − δrs 

⇒ Completeness relation

∑  [ ur ur − vr vr ] = 14x4

E
m

_                        _

E
m

_                                            _

           −          −
r

Check:

✓

Polarization sums. Mandl&Shaw call these “energy 
projection operators” ; Section A.5 ;

Λ±(p) = (±p+m)/2m      

Λ+(p) = ∑ ur (p) ur(p) and Λ–(p) = – ∑ vr (p) vr(p)
              r                                                r

 _  _ 



Homework Problems due Friday, March 25

Problem 1.
A. Determine the Dirac spinors v1(p) and v2(p) for 

antiparticles.
B. Determine the polarization sum Λ−(p) for 

antiparticles.
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