How is the Dirac equation consistent with special relativity? (Appendix)

$$(i \gamma \cdot \partial - m) \psi(x) = 0$$
 (1)

Now consider two inertial frames,

 $\mathbf{x}^{\mu} = \{ x^0, x^1, x^2, x^3 \}$ ref. frame \mathcal{F}

$$x'^{\mu} = \{ x'^{0}, x'^{1}, x'^{2}, x'^{3} \}$$
 ref. frame \mathcal{F}

 $x'^{\mu} = \Lambda^{\mu}_{\nu} x^{\nu}$ where Λ^{μ}_{ν} = the Lorentz transformation matrix

Suppose $\psi(x)$ is a solution of the Dirac equation in the unprimed coordinates. *What is the solution in the primed coordinates?*

I.e., we want $(i\gamma'\cdot\partial'-m)\psi'(x')=0$ (2) **(1)** Question: What is γ'^{μ} ? Answer: $\gamma'^{\mu} = \gamma^{\mu}$. Proof: Gamma matrices are the same in all inertial frames; e.g., $\gamma^0 = \begin{array}{c|c} 1 & 0 \\ 0 & -1 \end{array}$ and $\gamma^i = \begin{array}{c|c} 0 & \sigma_i \\ -\sigma_i & 0 \end{array}$ (2) Question: What is ∂'_{μ} ? Answer: $\partial'_{\mu} = (\Lambda^{-1})^{\nu}_{\mu} \partial_{\nu}$ Proof: By the chain rule, $\frac{\partial Q}{\partial x' w} = \frac{\partial Q}{\partial x'} \frac{\partial x'}{\partial x' w}$ where $x' = (\Lambda^{-1})^{\nu} p x^{\rho}$

Require ($i \gamma' . \partial' - m$) $\psi'(x') = 0$ (2)

③ Question: What is $\psi'(x')$? Answer:

 $\psi'(x') = S(\Lambda) \psi(x)$ [Mandl&Shaw]

Here $S(\Lambda)$ is a 4 x 4 matrix; it's the matrix such that Eq. (2) is satisfied.

Theorem 1

The matrix $S(\Lambda)$ must satisfy

 $S^{-1} \gamma^{\mu} S = \Lambda^{\mu}_{\nu} \gamma^{\nu}$.

Theorem 2 S(Λ) = exp[- (*i*/2) ω_{μν}σ^{μν}] where $σ^{μν} = i/4 [γ^{μ}, γ^{ν}]$,

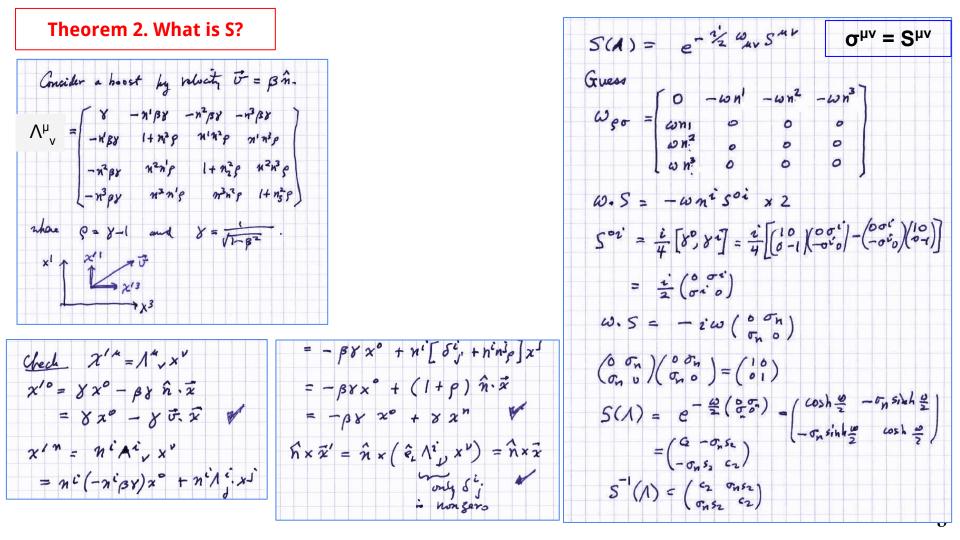
and $\omega_{_{\mu\nu}}$ is antisymmetric w.r.t. exchange of $_{\mu}$ and $_{\nu}$.

<u>Proof of Theorem 1</u>; by verification

(
$$i \gamma' . \partial' - m$$
) $\psi'(x')$

 $= (i \gamma^{\mu} (\Lambda^{-1})^{\nu}{}_{\mu} \partial_{\nu} - m) S(\Lambda) \psi(x)$ $= S S^{-1} (i \gamma^{\mu} (\Lambda^{-1})^{\nu}{}_{\mu} \partial_{\nu} - m) S \psi(x)$ $= S (i S^{-1} \gamma^{\mu} S (\Lambda^{-1})^{\nu}{}_{\mu} \partial_{\nu} - m) \psi(x)$ $= S (i \Lambda^{\mu}{}_{\lambda} \gamma^{\lambda} (\Lambda^{-1})^{\nu}{}_{\mu} \partial_{\nu} - m) \psi(x)$ $= S (i \gamma^{\lambda} \partial_{\lambda} - m) \psi(x)$

= 0. <u>Q.E.D.</u> (assuming S exists)



<u>Theorem 2</u> To prove: $S^{-1} \gamma^{\mu} S = \Lambda^{\mu}_{\nu} \gamma^{\nu}$

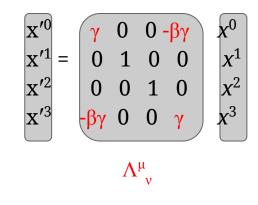
First, consider $\mu = 0$.

$$\begin{array}{l}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\bigg{)} \begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\bigg{)} \\
\bigg{)} \\
\end{array} \\
\bigg{)} \\
\end{array} \\
\bigg{)} \\
\end{array} \\
\bigg{)} \\
\bigg$$

Now consider μ = i. 1=1 on C2 0 + 2n 0 52 nes = 2-2n' 04 52 n = Exercic n's (S=sihhw) Sij + -= Sij + nind Q.E.D

Example.

Consider a boost in the z direction. The Lorentz transformation matrix is



What is S(A)?

$$S(\Lambda) = \exp\{-\omega/2 \begin{bmatrix} 0 & -\sigma_3 \\ \sigma_3 & 0 \end{bmatrix}\}$$
$$S(\Lambda) = \frac{\cosh(\omega/2)}{-\sigma_3 \sinh(\omega/2)} \frac{-\sigma_3 \sinh(\omega/2)}{\cosh(\omega/2)}$$

S(Λ) =	cosh(ω/2)	$-\sigma_3 \sinh(\omega/2)$
	$-\sigma_3^{}sinh(\omega/2)$	cosh(ω/2)

<u>Example</u>

The Dirac spinors for a particle at rest are

$$u_{i}^{\prime}(\bar{o}) = \begin{pmatrix} i \\ o \\ o \end{pmatrix} \text{ and } u_{2}^{\prime}(\bar{o}) = \begin{pmatrix} i \\ i \\ o \end{pmatrix}$$
(Frame II. is the rest frame
of the particle.)

Therefore the Dirac spinors for a particle with 3-momentum $\mathbf{p} = (0, 0, p^3)$ are

$$\begin{array}{l}
u_{1}(\vec{p}) = \int^{n-1}(\Lambda) u_{1}^{\prime}(\vec{p}) \\
= \left(\begin{array}{cccc} \exists c_{2} & \sigma_{3} s_{p} \\ \sigma_{3} s_{2} & \exists c_{2} \end{array}\right) \left(\begin{array}{c} 0 \\ 0 \end{array}\right) = \left(\begin{array}{c} c_{2} \\ \sigma_{3} \\ s_{2} \end{array}\right) \\
c_{2} = c_{0} s h \frac{\omega}{2} & c_{n} d & c_{0} s h \omega = \chi = \frac{E}{mc^{2}} \\
c_{2} = c_{0} s h \frac{\omega}{2} & c_{n} d & c_{0} s h \omega = \chi = \frac{E}{mc^{2}} \\
c_{2} = c_{0} s h \frac{\omega}{2} & c_{n} d & c_{0} s h \omega = \chi = \frac{E}{mc^{2}} \\
c_{2} = \sqrt{\frac{1}{2}(\chi + 1)} = \sqrt{\frac{E+m}{2m}} \\
s_{2} = \sqrt{\frac{E-m}{2m}} & (c_{2}^{2} - s_{2}^{2} = 1) \\
\eta_{1}(\vec{p}) = \frac{1}{\sqrt{2m}} \left(\frac{\sqrt{E+m}}{\sqrt{E-m}}\right) = \mathcal{N} \left(\frac{E+m}{\rho_{2}}\right) \\
Sim_{0} \quad \mathcal{U}_{2}(\vec{p}) = \mathcal{N} \left(\frac{E+m}{-\rho_{2}}\right)
\end{array}$$

agrees with the eigenvectors of γ **.**p.

Dirac Field Bilinears

 $\overline{\psi} \ \psi \quad \text{is a scalar} \quad$

 $\overline{\psi} ~~ \gamma^{\mu} ~\psi ~~ is ~a ~vector$

 $\overline{\psi} \,\, \gamma^{\mu} \, \gamma^{\nu} \, \psi$ is a tensor

 $\overline{\psi} \ \gamma^5 \ \psi \quad \text{is a pseudo-scalar}$

 $\overline{\psi} \ \gamma^{\mu} \ \gamma^{5} \ \psi$ is a pseudo-vector

Proof

