
Section 6.1
Natural dimensions and units

Set ħ = 1 and c = 1.

I.e., omit all factors of ħ and c 
during calculations.

At the end of the calculation, restore the 
factors of ħ and c by unit analysis.
(There is always a unique way to do this.)

Read Section 6.1 for a detailed discussion 
of this method.
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Section 6.2
The S-matrix expansion

We already know this from PHY 855.

Use the Interaction Picture to calculate 
the transition matrix elements, treating 
the interaction in perturbation theory.

⑴ The Hamiltonian is H  =  H0 + HI .

⑵ The S-matrix, S = U(∞, –∞) .

The goal of quantum theory is to 
calculate time evolution of the states of 
the system.

Let |ψ,t0> be the state at time t0.
Then the state at time t is (in the 
Schroedinger picture)

|ψ,t> = e−iH(t−t0) |ψ,t0>

Now suppose t0  ➝  – ∞ ,
and |ψ,t0> ➝ | i >,
where | i > consists of free particles 
(i.e., very far apart).
Then the state at time t, for t  ➝  ∞, is

|ψ,t> = e−iH(t−t0) | i >

= ∑j | j > < j | e−iH(t−t0) | i >
=  ∑j | j >  Sji 

So the probability that the state | f > will 
be observed at time t is

P( i ➝ f ) = | Sfi|
2 .
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Now, consider, in the Heisenberg picture,

<Ψ0| A(t) B(t0) |Ψ0 >

= < Ψ0 | A(0) e–iHt eiHt0 B(0) |Ψ0 >

= < Ψ0 | A(0) U(t,t0) B(0) |Ψ0 > ;

...which must be the same function in the 

interaction picture

= < 0 | A(0) 

∫t0
 t T exp [–i HI(t′) t′ ] dt′     B(0) | 0 >IP

Thus,

U(∞,–∞) = S = 

∫t0
 t T exp [–i HI(t′) t′ ] dt′ 

⑶

⇒ MANDL&SHAW Eq. (6.22b)

S = ∑n=0
∞  (−i)n / n!  ∫ dt1 … ∫  dtn

T{ HI(t1) … HI(tn) } .

Now apply this result to Quantum Field 

Theory:

HI(t) = ∫  d3x HI(t,x)

S = ∑n=0
∞  (−i)n / n! ∫ d4x1 … ∫ d4xn

T{ HI(x1) … HI(xn) } .

Eq. (6.23)

“This equation is the Dyson expansion of the S-
matrix. It forms the starting point for the approach 
to perturbation theory used in this book.”

Usually HI( x ) = −LI( x )
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Section 6.3.
Wick’s theorem

We studied this in PHY 855.

⓵ The time-ordered product of two fields 
is equal to the normal-ordered product 
plus a c-number contraction.

    T{A(x1) B(x2)} = 

N{A(x1) B(x2)} + A(x1) B(x2)

⓶ The c-number contraction is a 
propagator.

A(x1) B(x2) ≡ <0| T { A(x1) B(x2) } |0>

⓷ Examples

Real scalar field (6.32a) :
φ(x1)φ(x2) = i ΔF(x1–x2)

Complex scalar field (6.32b):
φ(x1)φ

♰(x2) = φ♰(x2) φ(x1) = i ΔF(x1–x2)

Dirac field (6.32c):

ψ(x1)ψ(x2) = –ψ(x2)ψ(x1) = i SF(x1–x2)

Electromagnetic field (6.32d):
 Aμ(x1) Aν(x1) = (a future lecture)

The contraction of two distinguishable 
fields is 0. E.g., contraction of electron 
field and quark field = 0.

       ―            ―



Exercise: Read Chapter 6.

Homework Problem due April 1.

Problem 4.
Use anticommutation relations and definitions 
to prove

T{ψ (x) ψ (y)} − N{ψ (x)ψ (y)} = i SF  (x−y)           ―                       ―

     α         β                   α        β                αβ

⓸  The time-ordered product of any 
number of fields can be written as the 
sum of all normal ordered products 
multiplied by c-number contractions.
(Wick’s Theorem)

⓹ The vacuum expectation value of any 
normal-ordered product is 0.

⓺ The vacuum expectation value of any 
time-ordered product is the sum of all 
complete contractions.

That’s where we get Feynman diagrams.
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