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Section 5.1.
The Classical Electromagnetic Fields

▮ Maxwell’s theory in covariant form

⚡ The field tensor Fμν(x)

        0     Ex     Ey      Ez
      -Ex     0      Bz    -By         =  Fμν

      -Ey   -Bz     0       Bx 
      -Ez    By    -Bx      0    

⚡ The field equations

∂ν F
μν = sμ ; which requires ∂μs

μ = 0 ;  (CM1)

∂λ Fμν + ∂μ Fνλ +∂ν Fλμ  = 0 .     (CM2)
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⚡ The 4-vector potential Aμ(x)

Fμν = ∂ᬓ A
μ  − ∂μ Aᬓ

This makes (CM2) = 0 automatically, i.e., 
for any Aμ(x). Now (CM1) becomes

◻Aμ − ∂μ (∂ᬓA
ᬓ) = sμ

⚡ The classical gauge transformation

Fμν is invariant under the transformation

Aμ(x) ⟶ A′μ(x) = Aμ(x) + ∂μ f(x)

for any scalar function f(x).
Proof:

▮ Lagrangian dynamics
for electromagnetism

⚡ One classical Lagrangian density

Let’s consider
L = −¼ Fμν F

μν − sμ A
μ (L1)

Lorentz invariant? �
Gauge invariant? X     But δL = ∂μ( − sμ f )

Gauge invariant? �
Then what is the field equation for Aμ ?
Lagrange’s equation:
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F0i = ∂i A0 − ∂0 Ai

E = − ∇Φ − ∂A/∂t
Fij = ∂j Ai − ∂i Aj

=−∂
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 Ai +∂
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 Aj = ε

ijk
(∇×A)

k



However, the Lagrangian density (L1) is 
not compatible with canonical 
quantization.

L = −¼ Fμν F
μν − sμ A

μ (L1)

Canonical momentum (a 4-vector)

⚡ Another classical Lagrangian density
(Fermi)

L = −½ (∂νAμ) (∂
νAμ) − sμ A

μ (L2)

✓First check the field equation:

OK, provided Aρ obeys the Lorentz gauge condition, 
∂ρA

ρ = 0 .

✓Then check the compatibility with canonical 
quantization:

OK, but now there are 4 degrees of freedom:
Trans1 , Trans2 , Long , A0.  L and A0 are unphysical. 3



The Lorentz gauge condition in the classical 
theory.

In the classical theory, suppose we have 
fields ( i.e., the tensor Fμν(x)     ) with a 4-
vector potential Aμ(x).

But suppose ∂μA
μ ≠ 0 .

There exists a gauge transformation
Aμ(x) ⟶ A′μ(x) such that ∂μA′μ = 0.

Proof:

Let  f(x) = –□–1(∂ρA
ρ)

The gauge transformation does not 
change the fields, Fμν(x). 

The Lorentz gauge
versus the Coulomb gauge.

∂μA
μ = 0

versus
∇⋅A = 0 and –∇2Φ = j0

The theory is gauge invariant; 
i.e., the physical predictions are the same for either 
gauge condition.

The Coulomb gauge has an advantage: it is a “unitary 
gauge”. But it has a disadvantage: it is not manifestly 
Lorentz invariant.

The Lorentz gauge has an advantage: it is manifestly 
Lorentz invariant. But is has a disadvantage: it has 
unphysical degrees of freedom.

Section 5.2: ① Use the “Gupta-Bleuler formalism”  to 
impose the condition ∂

μ
Aμ = 0  ; and ② don’t worry 

about it. 4



Section 13.4.
Gauge Independent Quantization?
“… … … 
As in the canonical formulation, the 
electromagnetic field cannot be consistently 
quantized using path integrals without ‘fixing a 
gauge.’
”

Section 14.1. Gluon Fields
“
Section 14.1.5.
The electromagnetic field revisited.
It will be instructive to comment briefly on the 
result of applying the Faddeev-Popov procedure 
to the electromagnetic field.
”

But now going back to Section 5.1:

⚡ Plane wave solutions

The free field theory ( sμ(x) = 0 ) has just

◻Aμ = 0 . (impose LG condition later)

The plane wave solutions are

Aμ(x) = εr
μ(k) e –i k.x  w/ r ∊ { 0, 1, 2, 3 }

where k0 = ±|k| .

The four polarization vectors are normalized in 
some way; ε1

μ and ε2
μ are transverse w. r. t. k, 

ε3
μ is longitudinal, and ε0

μ is timelike.

The general solution is
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