
SECTION 5.2.
COVARIANT QUANTIZATION
Review the covariant equations for the 
classical electromagnetic field

F = curl A ; Fμν  = ∂νAμ−∂μAν

In the Lorentz gauge (∂μA
μ = 0) we can 

use the Lagrangian density

L = −½ (∂νAμ)(∂νAμ) − sμ
 Aμ

Now apply canonical quantization to this 
Lagrangian density. Then calculate

[ Aμ(x) , Aν(y) ] = i Dμν (x-y)

and

<0|T Aμ(x)  Aν(y) |0> = i D
F
μν (x-y)

Chapter 5. Photons: Covariant Theory
5.1. The classical fields  ✔
5.2. Covariant quantization
5.3. The photon propagator

Chapter 6. The S-Matrix Expansion
6.1. Natural Dimensions and Units ✔
6.2. The S-matrix expansion ✔
6.3. Wick’s theorem ✔

Chapter 7. Feynman Diagrams and Rules in QED
7.1. Feynman diagrams in configuration space
7.2. Feynman diagrams in momentum space
7.3. Feynman rules for QED
7.4. Leptons

Chapter 8. QED Processes in Lowest Order
8.1. The cross section
8.2  Spin sums
8.3. Photon polarization sums
8.4-7. Examples
8.8-9. Bremsstrahlung
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Different i and j are independent

∴ [Ai(x),Aj(y)] = i δ
ij
 Δ(x−y)     

& <0| T Ai(x) Aj(y) | 0> = i δ
ij 
Δ

F
(x−y)

◾ A0(x) is a little different (the sign)

Π0 = ∂L  / ∂(∂A0 /∂t) = − ∂A0 /∂t

(compare Πφ = ∂φ/∂t)

So the commutator is

[ A0(x) , A0(y) ] =  −i Δ(x−y)

Commutator result
[ Aμ(x) , Aν(y) ] = −i gμν Δ(x−y)

= i Dμν (x-y)
∴   Dμν (x−y) = − gμν Δ(x−y) 

(with m = 0 )

L = −½ (∂νAμ)(∂νAμ) − sμ
 Aμ

Recall the real scalar field,

Lφ 
 =  ½(∂νφ)(∂νφ)−½ m2 φ2

[φ(x),φ(y)] = i Δ(x−y)

<0| T φ(x) φ(y) | 0> = i Δ
F
(x−y)

Note that the free e.m. field has

L = −½(∂νA
0)(∂νA0)+½(∂νA

i)(∂νAi)
(sum i = 1 2 3)

◾ Ai(x) is just like φ(x) with m=0

∴ [Ai(x),Ai(y)] = i Δ(x−y)       

∴ <0| T Ai(x) Ai(y) | 0> = i Δ
F
(x−y)

(no sum on i)
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◾ As for the propagator,
same thing ⇒

<0| T Aμ(x) Aν(y) | 0> = −i gμν Δ
F
(x−y)

= i D
F
μν(x−y)

D
F
μν(x−y) = − gμν Δ

F
(x−y)

(with m = 0 )

The Fourier integral,

D
F
μν(x−y) = ∫    ――   D

F
μν(k) e−i k.x

D
F
μν(k) =   ――

  d4k
(2π)4

−gμν

k2+i ε

Expansion in plane waves

The  four-vector polarization vectors are defined like 
this:

The canonical commutation relation
[ Aμ(x) , Aν(y) ] = −i gμν Δ(x−y) implies

[ar(k),a♰s(k′)] = δrs δkk′ ζr  where ζr = -1 for 0 = r    
+1 for 123



๏ Theorem

[ a3(k) − a0(k) ] |Ψ> = 0 for all k

Proof

The constraint ∂μA
μ = 0;

i.e., Lorentz gauge quantization

๏ We cannot set ∂μA
μ = 0 as an operator 

equation.

Proof

๏ The Gupta-Bleuler formalism:
(Comment: it’s not a theory;
it’s not a model; it’s a formalism.)

Apply the constraint, ∂μA
μ = 0 , to the 

states of the Hilbert space; require

∂μA
(+)μ |Ψ> = 0 ,

for any physical state |Ψ> .
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๏ Example. Consider
|ψ> = [  a♰3(p) − a♰0(q) ] |0>

It has

a3(k) |ψ> = δk,p |0>

a0(k) |ψ> =  δk,q |0>

So |ψ> is a physical state (★) provided 

that  p = q .

(M. & Sh. problem 5.2; homework)

๏ But that is just a gauge transformation. 

(M. & Sh. problem 5.3; homework)

 

[ a3(k) − a0(k) ] |Ψ> = 0, (★)

for any physical state; arb k.

What does it mean? 

๏ Recall the free vacuum |0> ; it has

ar(k) |0> = 0 for r = 0 1 2 3

so |0> obeys  (★)

๏ Now consider a♰r(k) |0>.

For r = 1, 2, it obeys (★).
Creating any transverse photons will 
yield a physical state.

For r = 3, 0, the state does not obey (★). 
Creating single longitudinal or scalar 
photons will yield an unphysical state; or, 
a physical state requires creating 
longitudinal and scalar together. 
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This is all we need to proceed.

So now we could forget about the Gupta-
Bleuler formalism.

But note what Mandl and Shaw say at the 
end of Section 5.2:

“...
For most purposes, the complete 
formalism is not required.
[footnote: if interested, read 3 other 
books.]
”

An alternative approach (which is 
required for QCD but optional for QED) is 
to use functional integration with the 
Faddeev-Popov formalism. (M.&Sh. chapters 
10 - 14)

Results of the formalism

In the Gupta-Bleuler formalism,

● we only calculate transition amplitudes 
between states with transverse 
photons;

● i.e., longitudinal and scalar photons 
are not included in asymptotic states;

● but longitudinal and scalar photons do 
exist as virtual particles;

● i.e., we use  the full propagator −gμν/
(k2+iε) .
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