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SECTION 7.2.
FEYNMAN DIAGRAMS IN MOMENTUM SPACE

First, let’s consider an example:
ee scattering;  
⇒ the Møller cross section.

The lowest order term is 2nd order in 
the interaction,

S(2) = (1 /2!) (ie)2 ∫∫ d4x d4y
< f | T  ψγμψ Aμ (x) 

ψγνψAν(y) | i >

where | i > = |e
1 

; e
2
> and | f > = |e

3
 ; e

4
 >

Chapter 5. Photons: Covariant Theory
5.1. The classical fields ✔
5.2. Covariant quantization ✔
5.3. The photon propagator ✔

Chapter 6. The S-Matrix Expansion
6.1. Natural Dimensions and Units ✔
6.2. The S-matrix expansion ✔
6.3. Wick’s theorem ✔

Chapter 7. Feynman Diagrams and Rules in QED
7.1. Feynman diagrams in configuration space  ✔
7.2. Feynman diagrams in momentum space
7.3. Feynman rules for QED
7.4. Leptons

Chapter 8. QED Processes in Lowest Order
8.1. The cross section
8.2. Spin sums
8.3. Photon polarization sums
8.4-7. Examples
8.8-9. Bremsstrahlung
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Note: The 1 / n! from the exponential series,
will always cancel  n! permutations of the 
vertex positions { x1 , x2 , x3 , … , xn }.

This leads to a Feynman rule:
(1 ) Draw all the topologically distinct diagrams with the 
specified external lines.

For ee scattering there are two Feynman diagrams,

The corresponding S-matrix elements are

Apply Wick’s theorem and the
coordinate space Feynman rules.

∎ Wick’s theorem gives us 4 terms.
However,  S22 = S11 and S21 = S12 because we 
integrate over d4x and d4y.
(E.g., in S22

 change the variables of integration from x,y 
to y’,x’ ; then drop the primes; the result is S11 .)
So, S = (S11+S12) × 2 ;
the 2 will cancel the 1 / 2!.
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S(2) = (1 /2!) (ie)2 ∫∫ d4x d4y

< f | T  ψγμψ Aμ (x) ψγνψAν(y) | i >



The integral d4y :

The transformation from coordinate space to 
momentum space gave us some delta functions 
for 4-momentum conservation. This leads to 
another Feynman rule:
(2) 4-momentum is conserved at every vertex.

Transform S to momentum space.

Dμν(x−y) = (2π)−4 ∫ d4k (−gμν /k2) e i k.(x−y)

For the case St : the integral d4x gives

Comment:
That would be for infinite spacetime.
Instead, we normalize plane waves in a finite 
volume Ω, so then the result should be

These are the same in the limit Ω →∞,
but ...
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The matrix element for ee (Møller) scattering

Mt =  e2  (u
3
 γμ u1

) (u
4
 γμ u

2
)  /t

Mu =   −e2  (u
3
 γμ u2 

) (u
4
 γμ u

1 
)  /u

M =  Mt  + Mu

Note these other Feynman rules:
(3) A spinor for every external electron and 
positron.
(4) A polarization vector for every external 
photon.
(5) A propagator SF(p) for every (internal) 
electron line.
(6) A propagator DF

μν(q) for every (internal) 
photon line.
(7) A minus sign for exchanging 2 electrons.

The Feynman rules in momentum space are rules for 
calculating the matrix element M .

The S-matrix has some normalization factors 
that are not included in  M .
These normalization factors are

∏ (2 Ω Ei )
−1/2   and   ∏ (2 Ω Ef )

−1/2

 i                                   f

and  ∏ (2m)1 /2 .
         e

These factors are not part of M .
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To complete the calculation of the Møller cross 
section, we will need:
∎ |M |2  ; 
∎ and the average over initial spins and sum

over final spins, i.e.,
½   ∑  ½   ∑    ∑   ∑    [...]

.                    λ
1 
         λ

2
     λ

3 
    λ

4

Let’s go ahead and calculate that now.

Homework Problem X:
Plot the Moller cross section.
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The cross section.

The transition probability is the square of the S-
matrix element,

P = | S |2 .
The transition rate is the probability per unit 
time,

w = P/(2T) 
(evolution from -T to T)

The cross section is the rate divided by the 
incident flux, and the incident flux is

Φ = density × velocity = v
rel

 / Ω ;
 (1 particle in the volume Ω )

Thus dσ = w / Φ =   

8

|S|2 Ω
2T vrel


