\qquad
Homework Assignment \#3 due in class Wednesday, September 20
Cover sheet : Staple this page in front of your solutions.
INSTRUCTIONS : Write the requested answers (without calculations) on this page; write the detailed solutions (your work written clearly; no scratch paper) on your own paper.
[11] Problem 2.2.* Answer: the value of β is
[12] Problem 2.3.* Answer: the Reynolds number (part b) is
[13] Problem 2.10.** Answer: the terminal speed is
[14] Problem 2.18.* Answer: the Taylor series for $\ln (1+\delta)$ is
[15] Problem 2.26.* Answer: the time to slow to $15 \mathrm{~m} / \mathrm{s}$ is
[16] The terminal velocity of a drop of water (diameter $=\mathrm{D}$, mass $=\mathrm{m}$) is the velocity such that $\mathrm{F}=\mathrm{mg}-\mathrm{bv}-\mathrm{Cv}^{2}=0$. The parameter values for air at STP are

$$
\mathrm{b}=\left(1.6 \times 10^{-4} \mathrm{Ns} / \mathrm{m}^{2}\right) \mathrm{D} \quad \text { and } \quad \mathrm{c}=\left(0.25 \mathrm{Ns}^{2} / \mathrm{m}^{4}\right) \mathrm{D}^{2} ;
$$

also, $\mathrm{m}=\left(0.52 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right) \mathrm{D}^{3}$.
Determine $v_{\text {ter }}$ as a function of D. Plot an accurate graph of $v_{\text {ter }}$ versus D, from $D=0.1 \mathrm{~mm}$ to 3 mm . (Use a computer to make the plot.) The result shows why water droplets in a cloud do not fall as rain. Hand in the plot.
Answer here: Explain why water droplets in a cloud do not fall as rain.
[17] Consider these equations for a baseball fly ball near the surface of the Earth:
$m x^{\prime \prime}=-c\left(v_{x}^{2}+v_{y}^{2}\right) \cos \theta ; m y^{\prime \prime}=-m g-c\left(v_{x}^{2}+v_{y}^{2}\right) \sin \theta ; \tan \theta=v_{y} / v_{x}$. [Initial values: $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)=(1,0) \mathrm{m}$ and $\left(\mathrm{v}_{0 \mathrm{x}}, \mathrm{v}_{0 \mathrm{y}}\right)=(30,30) \mathrm{m} / \mathrm{s}$; terminal speed $=40 \mathrm{~m} / \mathrm{s}$.] Hand in an accurate plot of the trajectory, i.e., y versus x. (Use a computer.)

