Homework Assignment #3 due in class Wednesday, September 20 *Cover sheet : Staple this page in front of your solutions.*

INSTRUCTIONS : Write the requested *answers* (without calculations) on this page; write the detailed *solutions* (your work written clearly; no scratch paper) on your own paper.

[11] Problem 2.2.* Answer: the value of β is

[12] Problem 2.3.* Answer: the Reynolds number (part b) is

[13] Problem 2.10.** Answer: the terminal speed is

[14] Problem 2.18.* Answer: the Taylor series for $ln(1 + \delta)$ is

[15] Problem 2.26.* Answer: the time to slow to 15 m/s is

[16] The terminal velocity of a drop of water (diameter = D, mass = m) is the velocity such that $F = mg - bv - cv^2 = 0$. The parameter values for air at STP are

 $b = (1.6 \times 10^{-4} Ns/m^2) D$ and $c = (0.25 Ns^2/m^4) D^2$;

also, m = $(0.52 \times 10^3 kg/m^3) D^3$.

Determine v_{ter} as a function of D. Plot an accurate graph of v_{ter} versus D, from D = 0.1 mm to 3 mm. (Use a computer to make the plot.) The result shows why water droplets in a cloud do not fall as rain. Hand in the plot.

Answer here: Explain why water droplets in a cloud do not fall as rain.

[17] Consider these equations for a baseball fly ball near the surface of the Earth: $m x'' = -c (v_x^2 + v_y^2) cos \theta$; $m y'' = -mg - c (v_x^2 + v_y^2) sin \theta$; $tan \theta = v_y / v_x$. [Initial values: $(x_0, y_0) = (1, 0) m$ and $(v_{0x}, v_{0y}) = (30, 30) m/s$; terminal speed = 40 m/s.] Hand in an accurate plot of the trajectory, i.e., y versus x. (Use a computer.)