Name \qquad GRADING KEY \qquad
Homework Assignment \#3 due in class Wednesday, September 20
Cover sheet : Staple this page in front of your solutions.
INSTRUCTIONS : Write the requested answers (without calculations) on this page; write the detailed solutions (your work written clearly; no scratch paper) on your own paper.
[11] Problem 2.2.* Answer: the value of β is

$$
1.6 \times 10^{-4} \mathrm{Ns} / \mathrm{m}^{2}
$$

1 point
[12] Problem 2.3.* Answer: the Reynolds number (part b) is 0.0108

1 point
[13] Problem 2.10.** Answer: the terminal speed is $1.18 \times 10^{-3} \mathrm{~m} / \mathrm{s}$

2 points
[14] Problem 2.18.* Answer: the Taylor series for $\ln (1+\delta)$ is

$$
\delta-1 / 2 \delta^{2}+1 / 3 \delta^{3}
$$

[15] Problem 2.26.* Answer: the time to slow to $15 \mathrm{~m} / \mathrm{s}$ is
6.33 s

1 point
[16] The terminal velocity of a drop of water (diameter $=D$, mass $=m$) is the velocity such that $\boldsymbol{F}=\boldsymbol{m g} \mathbf{- b v} \boldsymbol{- c} \boldsymbol{v}^{2}=\mathbf{0}$. The parameter values for air at STP are

$$
\mathrm{b}=\left(1.6 \times 10^{-4} \mathrm{Ns} / \mathrm{m}^{2}\right) \mathrm{D} \quad \text { and } \quad \mathrm{c}=\left(0.25 \mathrm{Ns}^{2} / \mathrm{m}^{4}\right) \mathrm{D}^{2} ;
$$

also, $\mathrm{m}=\left(0.52 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right) \mathrm{D}^{3}$.
Determine $v_{\text {ter }}$ as a function of D. Plot an accurate graph of $v_{\text {ter }}$ versus D, from $D=0.1 \mathrm{~mm}$ to 3 mm . (Use a computer to make the plot.) The result shows why water droplets in a cloud do not fall as rain. Hand in the plot.
Answer here: Explain why water droplets in a cloud do not fall as rain. ($2+\mathbf{1}$ points)
Water droplets in a cloud are very small, so their terminal velocity is less than the velocities of updrafts in the cloud. The water droplets are constantly carried upward by updrafts.
[17] Consider these equations for a baseball fly ball near the surface of the Earth:
$m x^{\prime \prime}=-c\left(v_{x}{ }^{2}+v_{y}^{2}\right) \cos \theta ; m y^{\prime \prime}=-m g-c\left(v_{x}^{2}+v_{y}^{2}\right) \sin \theta ; \tan \theta=v_{y} / v_{x}$.
[Initial values: $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)=(1,0) \mathrm{m}$ and $\left(\mathrm{v}_{0 \mathrm{x}}, \mathrm{v}_{0 \mathrm{y}}\right)=(30,30) \mathrm{m} / \mathrm{s}$; terminal speed $=40 \mathrm{~m} / \mathrm{s}$.]
Hand in an accurate plot of the trajectory, i.e., y versus x. (Use a computer.) (4 points)

Homewnh Assignment 3
[iI] Problem 2.2 STOKES's LAW
Stokes's law for viscous drag $f_{\text {lin }}=3 \pi \eta D 0$
Thus $f_{\text {lin }}=b o$ where $b=3 \pi \eta D=\beta D$
where $\beta=3 \pi \eta$.
For air, $\eta=1.7 \times 10^{-5} \mathrm{Ns} / \mathrm{m}^{2}$ so $\beta=1.6 \times 10^{-4} \mathrm{Ns} / \mathrm{m}^{2}$
[12] Problem 2,3 REyNOLD's NUMBER
(a) Given $f_{\text {lin }}=3 \pi \eta$ av and $f_{\text {quad }}=K \rho A v ? \quad \begin{gathered}K \approx 0,\end{gathered}$

The Reynolds's number is defined by $\operatorname{Re}=\frac{\operatorname{Du\rho }}{3}$,
The ratio fqual/fun is

$$
\begin{aligned}
& \frac{f_{\text {quad }}}{f_{\text {linear }}}=\frac{k \rho \pi(D / 2)^{2} v^{2}}{3 \pi \eta D_{v}}=\frac{k}{12} \operatorname{Re} \\
& \text { ratio }=\frac{\operatorname{Re}}{48} \text { for } k=0.25 .
\end{aligned}
$$

(b) For a steal ball bearing in glycerine, wis the given narancter values,

$$
\begin{aligned}
& \operatorname{Re}=\frac{2 \mathrm{~mm} 5 \mathrm{~cm} / \mathrm{s}}{12 \mathrm{Ne} / \mathrm{m}^{2}} 1.3 \times 10^{-3} \mathrm{ly} / \mathrm{mm}^{3} \\
& \operatorname{Re}=0.0108
\end{aligned}
$$

Since Re is small, the linear resistive force is dominant.
[13] Doblem 2,10 A steel ball bearíy sinhing m' glycerine Use lirear resistence, $f_{i n}=3 \pi i \Delta v$.
(a) characteristic tire and ter minal valosith

$$
\begin{aligned}
& m \frac{d v}{d t}=F_{y} \\
&=m g-\rho_{q} V_{g}-b v \\
& \begin{array}{c}
\text { BUOYANCY} \text { FORCE }
\end{array}
\end{aligned}
$$

Solution by separation o vaniables

$$
\begin{aligned}
\frac{d v}{d t} & =g-\frac{\rho V g}{m}-\frac{b}{m} v \\
& =g\left[1-\rho / \rho_{\text {steel }}\right]-\frac{b}{m} v \\
& =g^{\prime}-\frac{b}{m} v \quad \leftarrow(\text { alvandy solvad in tre booll) }
\end{aligned}
$$

Thus $v_{\text {terminal }}=\frac{2 m g^{\prime}}{b}$ and $\tau=\frac{m}{b}$.
(c) Nurrerical $m=3,27 \times 10^{-5} \mathrm{~kg}$

$$
\begin{aligned}
& b=3 \pi \eta D= \\
& \tau=1.44 \times 10^{-4} ; U_{\mathrm{ter}}=1.18 \times 10^{-3} \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

95\% of torminal speal

$$
\begin{aligned}
& v=v_{\operatorname{ter}}\left(1-e^{-t / \tau}\right)=0.95 v_{\text {ter }} \\
& t_{95}=4.33 \times 10^{-4} \mathrm{~s}
\end{aligned}
$$

Reynolds's nuruber at $v=$ Uter

$$
\frac{f_{q \text { al }}}{f_{\text {lin }}}=\frac{D u \rho}{48 \eta}=5 \times 10^{-6} \quad \text { very small }
$$

$[14]$ Problem 2,18 TAYLOR'S THEOREM	
$f(x+\delta)=f(x)+f^{\prime}(x) \delta+f^{\prime \prime}(x) \frac{\delta^{3}}{2!}+f^{\prime \prime \prime}(x) \frac{\delta^{3}}{3!} \ldots .$.	

(a) $\ln (1+\delta) ; \operatorname{let} f=\ln$ and $x=1$.

$$
\ln (1+\delta)=\delta-\frac{1}{2} \delta^{2}+\frac{1}{3} \delta^{3}+\ldots
$$

(b) $\cos \delta$ let $f=\cos$ and $x=0$.

$$
\cos \delta=1-\frac{1}{2} \delta^{2}+\frac{1}{24} \delta^{4} \tan .
$$

(c) $\operatorname{san} \delta ;$ cet $f=\sin$ and $x=0$.

$$
\sin \delta=\delta-\frac{1}{6} \delta^{3}+\frac{1}{120} \delta^{5}+\ldots \ldots
$$

(d)

$$
\begin{gathered}
\exp \delta=1+\delta+\frac{1}{2} \delta^{2}+\frac{1}{6} \delta^{3}+\cdots \\
+\cdots+\frac{\delta^{n}}{n!}+\cdots
\end{gathered}
$$

[15] Problem 2,26 A BICYCLE RIDER, COASTING TO A sTOP
 horizontal motion with air resistor a

Initial velocity $v_{0}=20 \mathrm{~m} / \mathrm{s} ; \quad$ man $=80 \mathrm{~kg}$.
Use quadratic air resistance,

$$
f_{\text {quad }}=c v^{2} \text { wham } c=0.20 \quad \frac{\mathrm{Ns}^{2}}{\mathrm{~m}^{2}}
$$

The characteristic time is $\tau=\frac{M}{C v_{0}}=20 \mathrm{secml}$.
The velocity us a function of time is

$$
v(t)=\frac{v_{0}}{1+t / c} ;
$$

therefore $t=\tau\left(\frac{v_{0}}{v}-1\right)$

v	t
$20 \mathrm{~m} / \mathrm{s}$	0
$15 \mathrm{~m} / \mathrm{s}$	$6,33 \mathrm{~s}$
$10 \mathrm{~m} / \mathrm{s}$	20 s
$5 \mathrm{~m} / \mathrm{s}$	60 s

[16] (4 points)
The terminal velocity is given by Fnet $=0$.

$$
m g-b v_{t}-c v_{t}^{2}=0
$$

Constants b and c depend on diameter D .
Solve for v_{t} and plot a graph of v_{t} versus D.
Small cloud droplets have terminal speed less than air currents so they just are carried around by the air currents, not falling from gravity.
[17] (4 points)
Use the computer program from the lecture of September 15.
The ball should travel about 100 meters.

