Homework Assignment #4 due in class Wednesday, September 27 *Cover sheet : Staple this page in front of your solutions.* INSTRUCTIONS: Write the requested *answers* (without calculations) on this page; write the detailed *solutions* (your work written clearly) on your own paper.

[17] Problem 2.23.* Answer: the terminal speed for the parachutist is ... 107 m/s /1 point/
[18] Problem 2.31.** Answer: the time for the basketball to fall to the ground from a 30 m tower is 2.78 s /2 points/
[19] Problem 2.41.** Answer: the calculated value of y_{max} is ... 20.4 m /2 points/
[20] Problem 2.53.* Answer: describe the particle's motion ...

The trajectory is a helix with increasing pitch.

point/

[21] Problem 2.43.*** [computer]

Hand in the computer program (2 points), calculations, and plots (2 points).

Answer here: the horizontal distance where the ball hits the ground is ...

17.71 m

/5 points total/

/5 points total/

11

[22] A mathematical exercise. Define $f_n(x) = (1 + x/n)^n$.

(A) What is the limit of $f_n(x)$ as $n \to \infty$. Give a proof of the result.

(B) Hand in a graph that shows, on one graph, $f_1(x)$, $f_2(x)$, $f_5(x)$ and $f_{\infty}(x)$ versus x for x from – 2 to 2. (Use a computer.)

Answer here: what is $f_{\infty}(x)$? exp(x)

Homework Assignment #4

17 Problem 2.23

Terminal speeds of falling objects ...

For quadratic air resistance, $m v' = mg - c v^2$. (v' = dv / dt)The terminal speed (F = 0) is $v_{ter} = \sqrt{mg / c}$. Here $c = \gamma D^2$ where $\gamma = 0.25 \text{ Ns}^2 / m^2$ and D = diameter. Also, $m = \rho V = \rho (\pi/6) D^3$.

case	D	ρ	V _{ter}
(a)	3 mm	8×10^3 kg/m ³	22.2 m/s
(b)	0.12 m	$8 \times 10^3 \text{kg/m}^3$	140.4 m/s
(c)	0.56 m	$1 \times 10^3 \text{ kg/m}^3$	107.0 m/s

18 Problem 2.31

A basketball falling through air ...

Parameters: m = 0.6 kg; D = 0.24 m(a) Terminal speed $v_{ter} = \sqrt{mg/c}$ where $c = (0.25 \text{ Ns}^2/m^2) D^2$ $v_{ter} = 20.2 \text{ m/s}$ (b) It falls distance 30 m, from rest. Calculate t_{final} and v_{final} . $y = (v_{ter}^2/g) \ln[\cosh(gt/v_{ter})]$ The distance is $t = (v_{ter}/g) \operatorname{arccosh}[\exp(gy/v_{ter}^2)]$ Thus y = 30 m implies t = 2.78 s. So $t_{final} = 2.78 \text{ s}$ The velocity is $v = v_{ter} \tanh (gt/v_{ter})$ $v_{final} = y(t_{final}) = 17.6 \text{ m/s.}$ SO

Compare in vacuum,

 $t_{final} = \sqrt{2y/g} = 2.47 s$ and $v_{final} = g t_{final} = 24.2 m/s$.

At maximum height, v = 0. Therefore, $v_{ter}^2 = (v_{ter}^2 + v_0^2) \exp(-2gy_{max}/v_{ter}^2)$. Solve for y_{max} : $y_{max} = (v_{ter}^2/2g) \ln[(v_{ter}^2 + v_0^2)/v_{ter}^2]$ eq. 2.89

Numerical

Set $v_0 = 20 \text{ m/s}$ and $v_{\text{ter}} = 35 \text{ m/s}$; then $y_{\text{max}} = 17.7 \text{ m}$. Compare in vacuum, $y_{\text{max}} = v_0^2 / (2g) = 20.4 \text{ m}$.

20 Problem 2.53

企

21 Problem 2.43

Trajectory of a basketball ...

This problem is a computer problem. Hand in the program and plots.

(a) Basketball throw

basketball parameters, initial conditions and air resistance

```
\ln[162] = \{ mass, diam, g \} = \{ 0.6, 0.24, 9.81 \};
      {x0, y0, v0x, v0y} = {0, 2, 15 / Sqrt[2], 15 / Sqrt[2]};
      \{\gamma, c\} = \{0.25, 0.25 * diam^2\};
In[177]:= eqns = {
         mass *x''[t] = -c * Sqrt[x'[t]^2 + y'[t]^2] * x'[t],
         mass * y''[t] == -c * Sqrt[x'[t]^2 + y'[t]^2] * y'[t] - mass * g,
         x[0] = x0, y[0] = y0, x'[0] = v0x, y'[0] = v0y;
      sols = NDSolve[eqns, {x, y}, {t, 0, 5}];
     X = x /. sols[[1]]; Y = y /. sols[[1]];
     p1 = ParametricPlot[{X[t], Y[t]}, {t, 0, 3},
         PlotRange → {{0, 25}, {0, 10}},
         BaseStyle \rightarrow {FontFamily \rightarrow "Times", FontSize \rightarrow 16},
         AxesLabel \rightarrow {"X", "Y"}];
     p2 = ParametricPlot[{x0 + v0x * t, y0 + v0y * t - 0.5 * g * t^2}, {t, 0, 3},
         PlotStyle \rightarrow Dashing[{0.01, 0.02}]];
      fig243 = Show[p1, p2]
```



```
(b) Range calculation

[n[195]:= tfinal = t /. FindRoot[Y[t] == 0, {t, 3}];
        {X[tfinal], Y[tfinal]}
        RangeNoAir = v0x * (2 * v0y / g)

Out[196]= {17.712, 6.10623 × 10<sup>-16</sup>}

Out[197]= 22.9358
```

⇧

