\qquad SOLUTON KEY

Homework Assignment \#4 due in class Wednesday, September 27
Cover sheet : Staple this page in front of your solutions.
INSTRUCTIONS: Write the requested answers (without calculations) on this page; write the detailed solutions (your work written clearly) on your own paper.
[17] Problem 2.23.* Answer: the terminal speed for the parachutist is ...
$107 \mathrm{~m} / \mathrm{s}$
/1 point/
[18] Problem 2.31.** Answer: the time for the basketball to fall to the ground from a 30 m tower is

$$
2.78 \mathrm{~s} \quad / 2 \text { points }
$$

[19] Problem 2.41.** Answer: the calculated value of $y_{\max }$ is ...

$$
20.4 \mathrm{~m} \quad / 2 \text { points/ }
$$

[20] Problem 2.53.* Answer: describe the particle's motion ...

The trajectory is a helix with increasing pitch.

point/
[21] Problem 2.43.*** [computer]
Hand in the computer program (2 points), calculations, and plots (2 points).
Answer here: the horizontal distance where the ball hits the ground is ...

$$
17.71 \mathrm{~m}
$$

[22] A mathematical exercise. Define $\mathrm{f}_{\mathrm{n}}(\mathrm{x})=(1+\mathrm{x} / \mathrm{n})^{\mathrm{n}}$.
(A) What is the limit of $\mathrm{f}_{\mathrm{n}}(\mathrm{x})$ as $\mathrm{n} \rightarrow \infty$. Give a proof of the result.
(B) Hand in a graph that shows, on one graph, $\mathrm{f}_{1}(\mathrm{x}), \mathrm{f}_{2}(\mathrm{x}), \mathrm{f}_{5}(\mathrm{x})$ and $\mathrm{f}_{\infty}(\mathrm{x})$ versus x for x from 2 to 2. (Use a computer.)
Answer here: what is $f_{\infty}(x)$?

$$
\exp (x)
$$

Homework Assignment \#4

17 Problem 2.23

Terminal speeds of falling objects ...

For quadratic air resistance, $\quad m v^{\prime}=m g-c v^{2}$.
$\left(v^{\prime}=d v / d t\right)$
The terminal speed $(F=0)$ is

$$
\mathrm{v}_{\mathrm{ter}}=\sqrt{\mathrm{mg} / \mathrm{c}} .
$$

Here
$\mathrm{c}=\gamma \mathrm{D}^{2} \quad$ where $\quad \gamma=0.25 \mathrm{Ns}^{2} / \mathrm{m}^{2} \quad$ and $\mathrm{D}=$ diameter.
Also, $\quad m=\rho V=\rho(\pi / 6) D^{3}$.

case	D	ρ	$\mathrm{v}_{\text {ter }}$
(a)	3 mm	$8 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$	$22.2 \mathrm{~m} / \mathrm{s}$
(b)	0.12 m	$8 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$	$140.4 \mathrm{~m} / \mathrm{s}$
(c)	0.56 m	$1 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$	$107.0 \mathrm{~m} / \mathrm{s}$

A basketball falling through air ...

Parameters: $\quad \mathrm{m}=0.6 \mathrm{~kg} ; \quad \mathrm{D}=0.24 \mathrm{~m}$
(a) Terminal speed

$$
\begin{aligned}
& \mathrm{v}_{\text {ter }}=\sqrt{\mathrm{mg} / \mathrm{c}} \quad \text { where } \quad \mathrm{c}=\left(0.25 \mathrm{Ns}^{2} / \mathrm{m}^{2}\right) \mathrm{D}^{2} \\
& \mathrm{v}_{\text {ter }}=20.2 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(b) It falls distance 30 m , from rest. Calculate $\mathrm{t}_{\text {final }}$ and $\mathrm{v}_{\text {final }}$.

- The distance is $y=\left(v_{\text {ter }}^{2} / g\right) \ln \left[\cosh \left(g t / v_{\text {ter }}\right)\right]$

Thus

$$
\mathrm{t}=\left(\mathrm{v}_{\mathrm{ter}} / \mathrm{g}\right) \operatorname{arccosh}\left[\exp \left(\mathrm{gy} / \mathrm{v}_{\mathrm{ter}}^{2}\right)\right]
$$

$\mathrm{y}=30 \mathrm{~m}$ implies $\mathrm{t}=2.78 \mathrm{~s}$. So $\mathrm{t}_{\text {final }}=2.78 \mathrm{~s}$

- The velocity is $\mathrm{v}=\mathrm{v}_{\text {ter }} \tanh \left(\mathrm{gt} / \mathrm{v}_{\text {ter }}\right)$
so $\quad v_{\text {final }}=y\left(\mathrm{t}_{\text {final }}\right)=17.6 \mathrm{~m} / \mathrm{s}$.

Compare in vacuum,

$$
\mathrm{t}_{\text {final }}=\sqrt{2 \mathrm{y} / \mathrm{g}}=2.47 \mathrm{~s} \quad \text { and } \quad \mathrm{v}_{\text {final }}=\mathrm{g}_{\mathrm{f} \text { final }}=24.2 \mathrm{~m} / \mathrm{s} .
$$

A baseball is thrown upward ...

$$
m v^{\prime}=-m g-\mathrm{c} \mathrm{v}^{2} \quad\left(\mathrm{v}^{\prime}=\mathrm{dv} / \mathrm{dt}\right)
$$

Terminal speed

$$
\mathrm{v}_{\mathrm{ter}}=\sqrt{\mathrm{mg}} / \mathrm{c}
$$

$$
\begin{aligned}
& \text { so } \quad \mathrm{c}=\mathrm{mg} / \mathrm{v}_{\text {ter }}^{2} \\
& \mathrm{dv} / \mathrm{dt}=-\mathrm{g}-\mathrm{g} \mathrm{v}^{2} / \mathrm{v}_{\text {ter }}^{2}
\end{aligned}
$$

Now calculate v as a function of height;

- Separation of variables

$$
\begin{aligned}
& \frac{d v}{d t}=\frac{d v}{d y} \frac{d y}{d t}=\frac{d v}{d y} v \\
& \frac{d v}{d y}=\frac{1}{v} \frac{d v}{d t}=\frac{-g}{v}\left(1+v^{2} / v_{\text {tor }}^{2}\right)
\end{aligned}
$$

- Integration

- Thus

$$
\begin{aligned}
& v^{2}(y)=-v_{\text {ter }}^{2}+\left(v_{0}^{2}+v_{\text {fer }}^{2}\right) e^{-2 g y / v_{\text {tar }}^{2}} \\
& y_{\text {max }}=\frac{v_{\text {tor }}^{2}}{2 g} \ln \frac{v_{\text {tr }}^{2}+v_{0}^{2}}{v_{\text {tar }}^{2}}
\end{aligned}
$$

$$
\begin{gathered}
\underbrace{v_{0}^{v} \frac{v^{\prime} d v^{\prime}}{\left(v_{\text {ter }}^{2}+v^{\prime 2}\right)}}_{\zeta=\frac{1}{2} \ln \frac{v^{2}+v_{t e v}^{2}}{v_{0}^{2}+v_{t a r}^{2}}}=\frac{-g}{v_{\text {ter }}^{2}} \int_{0}^{y} d y^{\prime}=\frac{-g y}{v_{\text {ter }}^{2}} \\
C
\end{gathered}
$$

At maximum height, $\mathrm{v}=0$.
Therefore, $\quad \mathrm{v}_{\text {ter }}{ }^{2}=\left(\mathrm{v}_{\text {ter }}{ }^{2}+\mathrm{v}_{0}{ }^{2}\right) \exp \left(-2 \mathrm{gy}_{\max } / \mathrm{v}_{\mathrm{ter}}{ }^{2}\right)$.
Solve for $y_{\text {max }}$: $\quad y_{\text {max }}=\left(\mathrm{v}_{\text {ter }}{ }^{2} / 2 \mathrm{~g}\right) \ln \left[\left(\mathrm{v}_{\text {ter }}{ }^{2}+\mathrm{v}_{0}{ }^{2}\right) / \mathrm{v}_{\text {ter }}{ }^{2}\right]$

Numerical

Set $\mathrm{v}_{0}=20 \mathrm{~m} / \mathrm{s}$ and $\mathrm{v}_{\text {ter }}=35 \mathrm{~m} / \mathrm{s}$; then $\mathrm{y}_{\max }=17.7 \mathrm{~m}$.
Compare in vacuum, $\quad y_{\text {max }}=v_{0}{ }^{2} /(2 \mathrm{~g})=20.4 \mathrm{~m}$.

A charged particle in parallel E and B fields ...
Set up coordinates with $\mathbf{B}=B \boldsymbol{e}_{\boldsymbol{z}}$ and $\mathbf{E}=E \boldsymbol{e}_{\boldsymbol{z}}$.
The force on q is

$$
\begin{aligned}
& \mathbf{F}=q \mathbf{E}+q \mathbf{v} \times \mathbf{B}=q E \boldsymbol{e}_{\mathbf{z}}+q\left(\boldsymbol{e}_{\mathbf{x}} v_{y} B-\boldsymbol{e}_{\boldsymbol{y}} v_{x} B\right) \text { Check: } \\
& \mathbf{v} \times \mathbf{B}=\left|\begin{array}{ccc}
\mathbf{e}_{\mathbf{x}} & \mathbf{e}_{\mathbf{y}} & \mathbf{e}_{\mathbf{z}} \\
v_{x} & v_{y} & v_{z} \\
0 & 0 & B
\end{array}\right|
\end{aligned}
$$

The equation of motion is

$$
m \mathrm{~d} \mathbf{v} / \mathrm{dt}=m v_{x}^{\prime} \boldsymbol{e}_{\boldsymbol{x}}+m v_{y}^{\prime} \boldsymbol{e}_{\boldsymbol{y}}+m v_{z}^{\prime} \boldsymbol{e}_{z}=\mathbf{F} ; \quad \text { (notation: } \quad \text { ' }=\mathrm{d} / \mathrm{dt} \text {) }
$$

so

$$
v_{x}^{\prime}=(q B / m) v_{y} ; \quad v_{y}^{\prime}=-(q B / m) v_{x} ; \quad v_{z}^{\prime}=0
$$

z component

$$
v_{z}=v_{0_{z}}+(q E / m) t \quad \text { constant acceleration }
$$

x and y components

$$
\begin{array}{ll}
v_{x}=A \cos \omega t & \omega=q B / m \\
v_{y}=A \sin \omega t & \text { uniform circular motion }
\end{array}
$$

- The trajectory is a helix with increasing pitch.

Trajectory of a basketball ...

This problem is a computer problem. Hand in the program and plots.
(a) Basketball throw
basketball parameters, initial conditions and air resistance
$\ln [162]:=\{$ mass, diam, $g\}=\{0.6,0.24,9.81\} ;$
$\left\{\mathbf{x} 0, \mathbf{y}^{0}, \mathrm{v} 0 \mathrm{x}, \mathrm{v} 0 \mathrm{y}\right\}=\{0,2,15 / \operatorname{Sqrt}[2], 15 /$ Sqrt[2]\};
$\{\gamma, c\}=\{0.25,0.25 * \operatorname{diam} \wedge 2\} ;$
$\ln [177]:=$ eqns $=\{$
$\operatorname{mass} * x^{\prime} '[t]=-c * \operatorname{Sqrt}\left[x^{\prime}[t] \wedge 2+y^{\prime}[t] \wedge 2\right] * x^{\prime}[t]$,
$\operatorname{mass} * y^{\prime} '[t]=-c * \operatorname{Sqrt}\left[x^{\prime}[t] \wedge 2+y^{\prime}[t] \wedge 2\right] * y^{\prime}[t]-\operatorname{mass} * g$,
$\left.\mathbf{x}[0]=x 0, y[0]==y 0, x^{\prime}[0]==v 0 x, y^{\prime}[0]==v 0 y\right\} ;$
sols $=$ NDSolve $[$ eqns, $\{x, y\},\{t, 0,5\}]$;
$\mathbf{X}=\mathrm{x} / \mathrm{sols}[[1]] ; \mathbf{Y}=\mathbf{y} /$. sols[[1]];
$\mathrm{p} 1=\operatorname{ParametricPlot}[\{\mathrm{X}[\mathrm{t}], \mathrm{Y}[\mathrm{t}]\},\{\mathrm{t}, 0,3\}$,
PlotRange $\rightarrow\{\{0,25\},\{0,10\}\}$,
Basestyle $\rightarrow\{$ FontFamily \rightarrow "Times", FontSize $\rightarrow 16\}$,
AxesLabel \rightarrow \{"X", "Y"\}];
$\mathrm{p} 2=\operatorname{ParametricPlot}[\{x 0+v 0 x * t, y 0+v 0 y * t-0.5 * g * t \wedge 2\},\{t, 0,3\}$, Plotstyle \rightarrow Dashing [\{0.01, 0.02\}]];
fig243 = Show[p1, p2]

(b) Range calculation
$\ln [195]=\operatorname{tfinal}=t / . \operatorname{FindRoot}[Y[t]=0,\{t, 3\}] ;$
$\{\mathbf{x}$ [tfinal], y [tfinal] $\}$
RangeNoAir = v0x * (2 * v0y/g)
Out[196] $=\left\{17.712,6.10623 \times 10^{-16}\right\}$
Out[197]= 22.9358
4.7

