Homework Assignment \#5

Problem 3.4

Two hobos on a hand cart ...

(a) If they jump simultaneously then
momentum is conserved $\Rightarrow \quad M_{c} v_{c}+2 m_{h}\left(v_{c}-u\right)=0$
thus

$$
v_{c}=\frac{2 m_{h} u}{M_{c}+2 m_{h}}=\frac{m_{h} u}{M_{c}+2 m_{h}}[2]
$$

(b) If they jump one after the other then

1. first jump $\Rightarrow\left(M_{c}+m_{h}\right) v_{1}+m_{h}\left(v_{1}-u\right)=0$
2. second jump $\Rightarrow M_{c} v_{2}+m_{h}\left(v_{2}-u\right)=\left(M_{c}+m_{h}\right) v_{1}$

These are two equations for two unknowns (v_{1} and v_{2}).
We want the final speed of the car $=v_{2}$.
After a bit of algebra, the answer is

$$
v_{2}=\frac{m_{h} u}{M_{c}+2 m_{h}}\left[\frac{2 M_{c}+3 m_{h}}{M_{c}+m_{h}}\right]
$$

- The second procedure gives greater speed to the car.

Problem 3.5

An elastic collision with equal masses ...

Equal masses, and one particle is initially at rest.
Before the collision:

After the collision:

Conservation laws
Momentum
Kinetic energy

$$
\begin{equation*}
m \mathbf{v}_{1}=m \mathbf{v}_{1}^{\prime}+m \mathbf{v}_{2}^{\prime} \quad \Rightarrow \quad \mathbf{v}_{1}=\mathbf{v}_{1}^{\prime}+\mathbf{v}_{2}^{\prime} \tag{1}
\end{equation*}
$$

$1 / 2 m v_{1}{ }^{2}=1 / 2 m v_{1}{ }^{\prime 2}+1 / 2 m v_{2}{ }^{\prime 2}$

$$
\begin{equation*}
\Rightarrow \quad v_{1}^{2}=v_{1}^{\prime 2}+v_{2}^{\prime 2} \tag{2}
\end{equation*}
$$

By eq. (1)

$$
\mathrm{v}_{1}^{2}=\left(\mathbf{v}_{\mathbf{1}}{ }^{\prime}+\mathbf{v}_{\mathbf{2}}{ }^{\prime}\right)^{2}=\mathrm{v}_{1}^{\prime 2}+\mathrm{v}_{2}^{\prime 2}+2 \mathbf{v}_{\mathbf{1}}^{\prime} \cdot \mathbf{v}_{\mathbf{2}}{ }^{\prime}
$$

Comparison to eq. (2) implies $\mathbf{v}_{\mathbf{1}}{ }^{\prime} \cdot \mathbf{v}_{\mathbf{2}}{ }^{\prime}=0$.
That is, the final velocities must be perpendicular.

The rocket equations are

$$
\mathrm{dm} / \mathrm{dt}=-\mathrm{K} \quad \text { and } \quad \mathrm{v}=\mathrm{v}_{\mathrm{ex}} \ln \left(\mathrm{~m}_{0} / \mathrm{m}\right) .
$$

We have these parameters:

$$
\mathrm{K}=15 \times 10^{3} \mathrm{~kg} / \mathrm{s} ; \quad \mathrm{v}_{\mathrm{ex}}=2500 \mathrm{~m} / \mathrm{s}
$$

The calculation :::

$$
\begin{aligned}
\text { Thrust } & =\mathrm{mdv} / \mathrm{dt}=K v_{\mathrm{ex}}=37.5 \times 10^{6} \mathrm{~N} \quad \mathrm{x}\left(1 \text { ton } / 9 \times 10^{3} \mathrm{~N}\right) \\
& =4170 \text { tons of force. }
\end{aligned}
$$

Compare that to the initial weight $=3000$ tons.

Problem 3.10

A rocket in deep space ...

A rocket accelerates from rest in deep space.
Calculate the maximum momentum of the rocket.
The rocket equation (there is no external force) is

$$
\mathrm{v}(\mathrm{t})=\mathrm{v}_{\mathrm{ex}} \ln \left[\mathrm{~m}_{0} / \mathrm{m}(\mathrm{t})\right] .
$$

The momentum at time t is $p(t)=m(t) v(t)$, so

$$
\mathrm{p}=\mathrm{m} \mathrm{v}_{\mathrm{ex}} \ln \left[\mathrm{~m}_{0} / \mathrm{m}\right] .
$$

To find the maximum momentum, set $\quad \mathrm{dp} / \mathrm{dm}=0$.

$$
\frac{d p}{d m}=v_{e x} \ln \left(\frac{m_{0}}{m}\right)-v_{e_{x}}
$$

Therefore $\mathrm{dp} / \mathrm{dm}=0$ implies

$$
\ln \left(\frac{m_{0}}{m}\right)=1
$$

That is,

$$
\mathrm{m}=\mathrm{m}_{0} / \mathrm{e}=0.368 \mathrm{~m}_{0} .
$$

The maximum momentum is

$$
\begin{aligned}
\mathrm{p}_{\max } & =\left(\mathrm{m}_{0} / \mathrm{e}\right) \mathrm{v}_{\mathrm{ex}} \ln \left[\mathrm{~m}_{0} /\left(\mathrm{m}_{0} / \mathrm{e}\right)\right] \\
& =\mathrm{m}_{0} \mathrm{v}_{\mathrm{ex}} / \mathrm{e} \\
& =0.368 \mathrm{~m}_{0} \mathrm{v}_{\mathrm{ex}} .
\end{aligned}
$$

Atwo-stage rocket ...

(a) First, consider a single-stage rocket;

$$
\begin{aligned}
\mathrm{v}_{\text {final }} & =\mathrm{v}_{\mathrm{ex}} \ln \left(\mathrm{~m}_{0} / \mathrm{m}_{\text {final }}\right)=\mathrm{v}_{\mathrm{ex}} \ln \left[\mathrm{~m}_{0} /\left(0.4 \mathrm{~m}_{0}\right)\right] \\
& =\mathrm{v}_{\mathrm{ex}} \ln (5 / 2)
\end{aligned}=0.916 \mathrm{v}_{\mathrm{ex}} .
$$

(b) Now, two stages;

1. the first stage $\left(\mathrm{m}_{0} \rightarrow \mathrm{~m}_{1}=0.7 \mathrm{~m}_{0}\right)$

$$
\mathrm{v}_{1}=\mathrm{v}_{\mathrm{ex}} \ln \left(\mathrm{~m}_{0} / \mathrm{m}_{1}\right)=\mathrm{v}_{\mathrm{ex}} \ln \left[\mathrm{~m}_{0} /\left(0.7 \mathrm{~m}_{0}\right)\right]=\mathrm{v}_{\mathrm{ex}} \ln (10 / 7)
$$

2. the second stage $\left(\mathrm{m}_{1}{ }^{\prime} \rightarrow \mathrm{m}_{2}=0.3 \mathrm{~m}_{0}\right.$) [where $\mathrm{m}_{1}{ }^{\prime}=\mathrm{m}_{1}-0.1 \mathrm{~m}_{0}$]

$$
\begin{aligned}
\mathrm{v}_{2}= & \mathrm{v}_{1}+\mathrm{v}_{\mathrm{ex}} \ln \left[\left(\mathrm{~m}_{1}-0.1 \mathrm{~m}_{0}\right) /\left(\mathrm{m}_{1}-0.1 \mathrm{~m}_{0}-0.3 \mathrm{~m}_{0}\right)\right] \\
& =\mathrm{v}_{\mathrm{ex}}\{\ln (10 / 7)+\ln (6 / 3)\}=\mathrm{v}_{\mathrm{ex}} \ln (20 / 7)=1.050 \mathrm{v}_{\mathrm{ex}}
\end{aligned}
$$

- The two-stage rocket reaches a larger final speed.

Problem 3.13

A rocket taking off in Earth's gravity ...

The velocity of a rocket accelerating upward in Earth's gravity (near the Earth's surface and starting from rest) is

$$
\mathrm{v}(\mathrm{t})=\mathrm{v}_{\mathrm{ex}} \ln \left[\mathrm{~m}_{0} /\left(\mathrm{m}_{0}-\mathrm{Kt}\right)\right]-\mathrm{gt} .
$$

The height at time t is

$$
\mathrm{y}(\mathrm{t})=\int_{0}^{\mathrm{t}} \mathrm{v}\left(\mathrm{t}^{\prime}\right) \mathrm{dt} \mathrm{t}^{\prime}=\int_{0}^{\mathrm{t}}\left\{\mathrm{v}_{\mathrm{ex}} \ln \left(\mathrm{~m}_{0}\right)-\ln \left(\mathrm{m}_{0}-\mathrm{K} \mathrm{t}^{\prime}\right)-\mathrm{g} \mathrm{t}^{\prime}\right\} \mathrm{dt} \mathrm{t}^{\prime}
$$

$$
\begin{aligned}
& y(t)=\int_{0}^{t} v\left(t^{\prime}\right) d t^{\prime} \\
& =\int_{0}^{t}\left[v_{e x} \ln m_{0}-v_{e x} \ln \left(m_{0}-K t^{\prime}\right)-g t^{\prime}\right] d t^{\prime} \\
& =v_{e x}\left(\ln m_{0}\right) t-\frac{1}{2} g t^{2}-v_{e x} \underbrace{\int_{0}^{t} \ln \left(m_{0}-K t^{\prime}\right) d t^{\prime}}_{A}
\end{aligned}
$$

$$
y(t)=-\frac{1}{2} g t^{2}+v_{e x}\left(\ln m_{0}\right) t
$$

$$
+\frac{v_{e x}}{k}\left[m_{0} \ln m-k t \ln m-m_{0} \ln m_{0}+k_{t}\right]
$$

$$
=\text { (algebra) }=-\frac{1}{2} g t^{2}+v_{e x} t-\frac{m v_{e x}}{K} \ln \left(\frac{m_{0}}{m}\right)
$$

The numerical calculation for Space Shuttle parameters

$$
\mathrm{m}_{0}=2 \times 10^{6} \mathrm{~kg} ; \quad \mathrm{K}=1 \times 10^{6} \mathrm{~kg} /(120 \mathrm{~s}) ; \quad \mathrm{v}_{\mathrm{ex}}=3000 \mathrm{~m} / \mathrm{s} ;
$$

then the height at time $t=120 \mathrm{~s}$ is

$$
y(120 \mathrm{~s})=39.9 \mathrm{~km}
$$

