Homework Assignment \#6 Name___grading \qquad due in class Friday, October 14
Cover Sheet : Staple this page in front of your solutions.
Write the answers (without calculations) on this page; write the detailed solutions on your own paper.

[27] Problem 3.16.*

Answer: The distance from the center of mass of the earth-sun system to the center of the sun is a fraction of the solar radius. The fraction is $450 / 7 \times 10^{5}=6.4 \times 10^{-4}$
[28] Problem 3.20.** (There is no answer to report here.)

[29] Problem 3.22.**

Answer: the coordinates (x, y, z) of the center. of mass are

$$
(0,0,3 / 8 \mathrm{R})
$$

[210] Problem 3.27.**
Answer: Let $A=$ the area bounded by the orbit and $T=$ the period of revolution. The relation between A and T is

$$
\mathrm{A}=(\ell / 2 \mathrm{~m}) \mathrm{T}
$$

[211] Problem 3.32.**
The moment of inertia is 2/5 M R ${ }^{2}$

[212] Problem 3.35.**

The acceleration of the center..of mass of the disk is

$$
2 / 3 g \sin \gamma
$$

Homework Assignment \#6

Problem 3.16

Earth and Sun ...

 at r_{C}

$$
r_{E}=1.5 \times 10^{8} \mathrm{~km}
$$

Calculate the position of the center of mass point.
Let $\mathrm{r}_{\mathrm{C}}=$ the distance from the center of the sun to the CoM point.

$$
(\mathrm{M}+\mathrm{m}) \mathrm{r}_{\mathrm{C}}=M \mathrm{r}_{\mathrm{S}}+\mathrm{mr} \mathrm{r}_{\mathrm{E}}
$$

where
$\mathrm{r}_{\mathrm{S}}=0 \quad$ (taking the origin to be the center of the Sun)

$$
\begin{aligned}
& r_{c}=\frac{m r_{E}}{M+m}=\frac{6 \times 10^{24} \times 1.5 \times 10^{8} \mathrm{~km}}{2 \times 10^{30}} \\
& r_{c}=4,5 \times 10^{2} \mathrm{~km}=450 \mathrm{~km}
\end{aligned}
$$

which is \lll the radius of the Sun $\left(\mathrm{R}_{\mathrm{S}}=7 \times 10^{5} \mathrm{~km}\right)$.

CoM point of a system of two solid objects ...

The center of mass position vector is

$$
\begin{aligned}
& \mathbf{R}=1 / M \int \mathbf{r d M} \\
& \frac{1}{M_{1}+M_{2}}\left\{\int_{R} \vec{r} d M+\int_{B_{2}} \vec{F} d M\right\} \\
& =\frac{1}{M_{1}+M_{2}}\left\{M_{1} \vec{R}_{1}+M_{2} \vec{R}_{2}\right\} \\
& =\frac{M_{1} \vec{R}_{1}+M_{2} \vec{R}_{2}}{M_{1}+M_{2}}
\end{aligned}
$$

which is the same as if the masses were concentrated at their center of mass points.

CoM of a uniform solid hemisphere ...

By symmetry, the center of mass point is located on the z axis, at $\mathrm{z}=\mathrm{z}_{\mathrm{C}}$.

$$
\mathrm{z}_{\mathrm{C}}=1 / \mathrm{M} \int \mathrm{z} \rho \mathrm{dV}
$$

Using spherical polar coordinates, $\mathrm{dV}=\mathrm{dr} \times \mathrm{r} \mathrm{d} \theta \times \mathrm{r} \sin \theta \mathrm{d} \varphi$;

$$
\begin{aligned}
& \mathrm{dV}=\mathrm{r}^{2} \mathrm{dr} \sin \theta \mathrm{~d} \theta \mathrm{~d} \varphi \quad \leftarrow \text { always remember this! } \\
& \\
& \begin{aligned}
\mathrm{z}_{\mathrm{C}}= & \frac{1}{M} \iiint \int \cos \theta \rho r^{2} d r \sin \theta d \theta d \phi \\
& =\frac{\rho}{M} \int_{0}^{R} r^{3} d r \int_{0}^{\pi / 2} \cos \theta \sin \theta d \theta \int_{0}^{2 r} d \phi \\
& =\frac{\rho}{M} \frac{R^{4}}{4} \cdot \frac{1}{2} \cdot 2 \pi=\frac{\pi}{4} \frac{\rho}{M} R^{4}
\end{aligned}
\end{aligned}
$$

Mass density:

$$
\rho=\frac{M}{V}=\frac{M}{\frac{2}{3} \pi R^{3}}=\frac{3 M}{2 \pi R^{3}}
$$

Thus

$$
z_{C}=3 / 8 \mathrm{R} .
$$

Kepler's 2nd Law ...

A planet revolves around the fixed Sun; the orbit plane $=x y$

Position vector $\mathbf{r}=\mathrm{r} \cos \varphi \boldsymbol{e}_{\boldsymbol{x}}+\mathrm{r} \sin \varphi \boldsymbol{e}_{\boldsymbol{y}}=\mathrm{r} \boldsymbol{e}_{\boldsymbol{r}}$
Velocity vector $\boldsymbol{v}=\mathrm{dr} / \mathrm{dt}$

$$
\begin{aligned}
& =\mathrm{r}^{\prime}\left(\cos \varphi \boldsymbol{e}_{\boldsymbol{x}}+\sin \varphi \boldsymbol{e}_{\boldsymbol{y}}\right)+\mathrm{r} \varphi^{\prime}\left(-\sin \varphi \boldsymbol{e}_{\boldsymbol{x}}+\cos \varphi \boldsymbol{e}_{\boldsymbol{y}}\right) \\
& =\mathrm{r}^{\prime} \boldsymbol{e}_{\boldsymbol{r}}+\mathrm{r} \varphi^{\prime} \boldsymbol{e}_{\varphi}
\end{aligned}
$$

(a) Angular momentum

$$
\boldsymbol{\ell}=\mathbf{r} \times \mathrm{m} \boldsymbol{v}=\mathrm{mr} \boldsymbol{e}_{\boldsymbol{r}} \times\left(\mathrm{r}^{\prime} \boldsymbol{e}_{\boldsymbol{r}}+\mathrm{r} \varphi^{\prime} \boldsymbol{e}_{\varphi}\right)=\mathrm{mr} \mathrm{r}^{2} \varphi^{\prime} \boldsymbol{e}_{\boldsymbol{z}}
$$

(b) The area swept out during a small time $\delta \mathrm{t}$ is
$\delta \mathrm{A}=1 / 2 \times$ base \times height

$$
=1 / 2 \mathrm{r} r \delta \varphi=1 / 2 \mathrm{r}^{2} \delta \varphi
$$

Thus the area rate is

$$
\mathrm{dA} / \mathrm{dt}=1 / 2 \mathrm{r}^{2} \varphi^{\prime}=\ell /(2 \mathrm{~m})=\text { which is a constant. }
$$

Kepler's second law:
The radial vector sweeps out equal areas in equal times.
To prove it, note that the area swept out during any time interval
Δt is $\Delta \mathrm{A}=\ell /(2 \mathrm{~m}) \times \Delta \mathrm{t}$, which only depends on the length of time.

Moment of inertia of a sphere ...

Consider a uniform solid sphere, with mass M and radius R .

Calculate the moment of inertia about a diameter axis.
Divide the sphere into infinitesimal masses;
then

$$
\mathrm{I}=\int \mathrm{r}_{\perp}{ }^{2} \mathrm{dM}
$$

Now $\quad d M=\rho d V ; \quad d V=r^{2} d r \sin \theta d \theta d \varphi ; \quad r_{\perp}=r \sin \theta$;
SO

$$
\begin{aligned}
I & =\int r_{1}^{2} d m=\int r^{2} \sin ^{2} \theta \rho r^{2} d r \sin \theta d \theta d \phi \\
& =\rho \int_{0}^{R} r^{4} d r \int_{0}^{\pi} \sin ^{3} \theta d \theta \int_{0}^{2 \pi} d \phi \\
& =\rho \frac{R^{5}}{5}, \frac{4}{3} \cdot 2 \pi=\rho \frac{8 \pi}{15} R^{5}
\end{aligned}
$$

Mass density:

$$
\rho=\frac{M}{V}=\frac{M}{\frac{4}{3} \pi R^{3}}=\frac{3 M}{4 \pi R^{3}}
$$

Thus $\quad I=2 / 5 \mathrm{MR}^{2}$.

Problem 3.35
A disk rolling on an inclined plane ...

(a) The free-body force diagram

(b) Derive the equation of motion, from the angular momentum and torque about an axis through the point $\mathrm{P}(=$ contact point $)$.

$$
\left.\begin{array}{ll}
\overrightarrow{\boldsymbol{L}}(\text { about } P)=I_{p} \omega \hat{n} \\
I_{P}=I_{C}+M R^{2}=\frac{1}{2} M R^{2}+M R^{2}=\frac{3}{2} M R^{2} \quad & \dot{L}_{z}=\frac{3}{2} M R^{2} \dot{\omega}=\frac{3}{2} M R \dot{v} \\
\Gamma_{z}(\text { about } P)=M g R \sin \gamma
\end{array}\right\}
$$

(c) Derive the equation of motion, from the angular momentum and torque about an axis through the point C (= center of the disk).

$$
\begin{aligned}
& \vec{L}=I_{C} \omega \hat{n}=\frac{1}{2} M R^{2} \omega \hat{n} \\
& \dot{L}_{z}=\frac{1}{2} M R^{2} \dot{\omega}=\frac{1}{2} M R \dot{v} \\
& \Gamma_{z}(\text { about } 0)=R f
\end{aligned}
$$

The center of man motion:

$$
M \dot{v}=M g \sin \gamma-f
$$

So $f=M g \sin \gamma-M \dot{v}$ and $f=\frac{\Gamma}{R}=\frac{1}{2} M \ddot{U}$

Thus $v=\frac{2}{3} g \sin \gamma$.

