Homework Assignment #6Name___grading____due in class Friday, October 14Cover Sheet : Staple this page in front of your solutions.Write the answers (without calculations) on this page;write the detailed solutions on your own paper.

[27] Problem 3.16.* Answer: The distance from the center of mass of the earth-sun system to the center of the sun is a fraction of the solar radius. The fraction is $450 / 7x10^5 = 6.4 \ge 10^{-4}$

[28] Problem 3.20.**	(There is no answer to report here.)
[29] Problem 3.22.**	
Answer: the coordinates	(x,y,z) of the center.of mass are
	(0,0, ³ / ₈ R)
[210] Problem 3.27.**	hounded by the orbit and T - the neried of
revolution. The relation	between A and T is
	A = $(2/2m)$ T
[211] Problem 3.32.**	The moment of inertia is
	$35 M R^2$

[212] Problem 3.35.** The acceleration of the center.of mass of the disk is $\frac{2}{3} g \sin \gamma$

Homework Assignment #6

Problem 3.16

Earth and Sun ...

Calculate the position of the center of mass point.

Let r_c = the distance from the center of the sun to the CoM point.

(M+m) $r_c = M r_s + m r_E$

where $r_s = 0$ (taking the origin to be the center of the Sun)

$$V_{c} = \frac{m r_{E}}{M + m} = \frac{6 \times 10^{24} \times 1.5 \times 10^{8} \, \text{km}}{2 \times 10^{30}}$$
$$C_{c} = 4.5 \times 10^{2} \, \text{km} = 450 \, \text{km}$$

which is <<< the radius of the Sun ($R_s = 7 \times 10^5$ km).

6.1

CoM point of a system of two solid objects ...

The center of mass position vector is

$$\mathbf{R} = 1/M \int \mathbf{r} \, \mathrm{d}\mathbf{M}$$

6.

$$\frac{1}{M_1 + M_2} \left\{ \int_{\mathbf{R}} \vec{F} dM + \int_{\mathbf{R}_2} \vec{F} dM \right\}$$
$$= \frac{1}{M_1 + M_2} \left\{ M_1 \vec{R}_1 + M_2 \vec{R}_2 \right\}$$
$$= \frac{M_1 \vec{R}_1 + M_2 \vec{R}_2}{M_1 + M_2}$$

which is the same as if the masses were concentrated at their center of mass points.

仓

Kepler's 2nd Law ...

A planet revolves around the fixed Sun; the orbit plane = xy

Position vector $\mathbf{r} = r \cos \varphi \mathbf{e}_x + r \sin \varphi \mathbf{e}_y = r \mathbf{e}_r$

Velocity vector $\mathbf{v} = d\mathbf{r} / dt$

= r' (
$$\cos \varphi e_x + \sin \varphi e_y$$
) + r φ' (- sin $\varphi e_x + \cos \varphi e_y$)
= r' e_r + r $\varphi' e_{\varphi}$

(a) Angular momentum

$$\boldsymbol{\ell} = \mathbf{r} \times \mathbf{m} \, \boldsymbol{v} = \mathbf{m} \mathbf{r} \, \boldsymbol{e}_r \times (\mathbf{r}' \, \boldsymbol{e}_r + \mathbf{r} \, \boldsymbol{\phi}' \, \boldsymbol{e}_{\boldsymbol{\phi}}) = \mathbf{m} \, \mathbf{r}^2 \, \boldsymbol{\phi}' \, \boldsymbol{e}_z$$

(b) The area swept out
during a small time
$$\delta t$$
 is
 $\delta A = \frac{1}{2} \times base \times height$

Thus the *area rate* is

 $dA / dt = \frac{1}{2} r^2 \varphi' = \ell / (2m) = which is a constant.$

Kepler's second law: *The radial vector sweeps out equal areas in equal times.* To prove it, note that the area swept out during any time interval Δt is $\Delta A = \ell / (2m) \times \Delta t$, which only depends on the length of time.

Moment of inertia of a sphere ...

Consider a uniform solid sphere, with mass M and radius R.

 $dm \text{ is at } (r, \theta, \phi)$ $dm = \rho \, dV$ $dV = r^2 dr \sin\theta d\theta \, d\phi$ $T = r \sin \theta$

Calculate the moment of inertia about a diameter axis.

Divide the sphere into infinitesimal masses;

then

$$I = \int r_{\perp}^{2} dM$$

Now

$$dM = \rho dV;$$

$$dV = r^2 dr \sin \theta d\theta d\phi$$
; $r_{\perp} = r \sin \theta$;

SO

$$I = \int r_{\perp}^{2} dm = \int r^{2} \sin^{2}\theta \rho r^{2} dr \sin\theta d\theta d\phi$$

= $\int \int_{0}^{R} r^{4} dr \int_{0}^{T} \sin^{3}\theta d\theta \int_{0}^{2T} d\phi$
= $\rho \frac{R^{5}}{5}, \frac{4}{3}, 2T = \rho \frac{8T}{15} R^{5}$

Mass density:

$$\int = \frac{M}{V} = \frac{M}{\frac{4}{3}\pi R^3} = \frac{3M}{4\pi R^3}$$

Thus $I = \frac{2}{5} M R^2$.

6.

A disk rolling on an inclined plane ...

 $\dot{\phi} = \omega$ $\psi_{c} = R\omega$

(a) The free-body force diagram

6.

(b) Derive the equation of motion, from the angular momentum and torque about an axis through the point P (= contact point).

$$\vec{I}(about P) = I_{p}\omega\hat{m}$$

$$L_{z} = \frac{3}{2}MR^{2}\dot{\omega} = \frac{3}{2}MR^{v}$$

$$L_{z} = \frac{3}{2}MR^{2}\dot{\omega} = \frac{3}{2}MR^{v}$$

$$[z(about P) = Mg Rsing$$

$$\vec{U} = \frac{2}{3}g \sin g$$

(c) Derive the equation of motion, from the angular momentum and torque about an axis through the point C (= center of the disk).

$$\vec{L} = \underline{I}_{c} \omega \hat{n} = \frac{1}{2} M R^{2} \omega \hat{n}$$

$$\vec{L}_{z} = \frac{1}{2} M R^{2} \hat{\omega} = \frac{1}{2} M R^{2} \hat{v}$$

$$\vec{L}_{z} = \frac{1}{2} M R^{2} \hat{\omega} = \frac{1}{2} M R^{2} \hat{v}$$

$$\vec{L}_{z} (about o) = R f$$

$$\vec{L} = \frac{1}{2} M \hat{v}$$

$$\vec{L}_{z} (about o) = R f$$

$$\vec{L} = \frac{1}{2} M \hat{v}$$

$$\vec{L} = \frac{1}{2} M \hat{v}$$

$$\vec{L} = \frac{1}{2} M \hat{v}$$

仓