Homework Assignment \#7
Name \qquad grading \qquad
due in class Friday, October 21
Cover sheet : Staple this page in front of your solutions.
Write the answers (without calculations) on this page; write the detailed solutions on your own paper.
[31] Problem 4.3.** Answer: Is F conservative? Why or why not? F is not conservative because W depends on the path.
[32] Problem 4.8.** Answer: The angle when the puck comes off the ..surface is\% $\arccos ()=0.841=48.2$ degrees
[33] Problem 4.9.** Answer: How does the frequency depend on g ? The frequency $=\operatorname{sqrt}(\mathrm{k} / \mathrm{m}) /(2 \pi)$; the frequency does not depend on g.
[34] Problem 4.10.*
Answer: Consider points on the line with $x=0$ and $z=1$;
what is the gradient of $h ? \quad \nabla \mathrm{~h}(0, \mathrm{y}, 1)=\{\mathrm{ay}, 0,0\}=$ a y \mathbf{e}_{x}
[35] Problem 4.18.** Answer:
$\mathrm{df}=\nabla \mathrm{f} \cdot \mathrm{d} \mathbf{r}=|\nabla \mathrm{f}||\mathrm{d} \mathbf{r}| \cos \theta$ is maximum at $\theta=0$.
[36] Problem 4.23.**
Answer: The potential energy function for part (b) is $\mathrm{U}(\mathrm{x}, \mathrm{y}, \mathrm{z})=-\mathrm{kx} \mathrm{y}$

Homework Assignment \#7

Problem 4.3

$$
\text { Work }=\int F . d s \ldots
$$

Consider the force field $\quad \mathbf{F}(\mathrm{r})=-\mathrm{y} \boldsymbol{e}_{x}+\mathrm{x} \boldsymbol{e}_{\boldsymbol{y}}$.
Calculate the work done for 3 paths from P to Q .
(a) $\mathrm{W}_{\mathrm{a}}=\int_{\Gamma a} \mathbf{F} . \mathrm{d} \boldsymbol{s}=\int_{\Gamma a}\left\{\mathrm{~F}_{\mathrm{x}} \mathrm{dx}+\mathrm{F}_{\mathrm{y}} \mathrm{dy}\right\}$

$$
\begin{aligned}
& =\int_{1}{ }^{0} \mathrm{~F}_{\mathrm{x}}(\mathrm{x}, 0) \mathrm{dx}+\int_{\boldsymbol{0}}{ }^{1} \mathrm{~F}_{\mathrm{y}}(0, \mathrm{y}) \mathrm{dy} \\
& =0+0 \quad=0 .
\end{aligned}
$$

(b) $\mathrm{W}_{\mathrm{b}}=\int_{\Gamma b} \mathbf{F} \cdot \mathbf{d s}=\int_{\Gamma b}\left\{\mathrm{~F}_{\mathrm{x}} \mathrm{dx}+\mathrm{F}_{\mathrm{y}} \mathrm{dy}\right\}$

Along $\Gamma_{b}, \mathrm{x}+\mathrm{y}=1$; that is, $\mathrm{y}=1-\mathrm{x}$.
$\therefore \quad W_{b}=\int_{1}^{0}\left\{\mathrm{~F}_{\mathrm{x}}(\mathrm{x}, 1-\mathrm{x}) \mathrm{dx}+\mathrm{F}_{\mathrm{y}}(\mathrm{x}, 1-\mathrm{x})(-\mathrm{dx})\right\}$

$$
=\int_{1}^{0}\{-(1-x)-x\} d x=1 .
$$

(c) $\mathrm{W}_{\mathrm{b}}=\int_{\Gamma \boldsymbol{c}} \mathbf{F} \cdot \mathbf{d s}=\int_{\Gamma c}\left\{\mathrm{~F}_{\mathrm{x}} \mathrm{dx}+\mathrm{F}_{\mathrm{y}} \mathrm{dy}\right\}$

Along $\Gamma_{c}, \mathrm{x}^{2}+\mathrm{y}^{2}=1$; that is, $\mathrm{y}=\sqrt{\left(1-\mathrm{x}^{2}\right)}$.
Continuing with Cartesian coordinates,
$\therefore \quad \mathrm{W}_{\mathrm{b}}=\int_{1}^{0}\left\{\mathrm{~F}_{\mathrm{x}}\left(\mathrm{x},\left(1-\mathrm{x}^{2}\right)^{1 / 2}\right)\right.$
$\left.+\mathrm{F}_{\mathrm{y}}\left(\mathrm{x},\left(1-\mathrm{x}^{2}\right)^{1 / 2}\right)(-\mathrm{x})\left(1-\mathrm{x}^{2}\right)^{-1 / 2}\right\} \mathrm{dx}$
finish this
(It is easier to calculate W_{c} using polar coordinates.)
Answers: $\{0,1, \pi / 2\}$

Problem 4.8

A puck slides down the surface of a fixed sphere ...

When the puck is a angle α, $y=R \cos \alpha$.

- Energy is conserved,

$$
1 / 2 \mathrm{~m} \mathrm{v}^{2}+\mathrm{mgy}=\text { constant }=\text { the initial value }=\mathrm{mgR} ;
$$

Therefore, $\quad v^{2}=2 g(R-y)$.

- Now calculate the normal force, when the puck is at angle α.

The radial acceleration is $\mathrm{a}_{\mathrm{r}}=-\mathrm{R} \alpha^{\prime 2}$; the velocity is $v=R \alpha^{\prime}$ (tangential) ; thus $\quad a_{r}=-v^{2} / R$.

By Newton's second law, $\mathrm{a}_{\mathrm{r}}=\mathrm{F}_{\mathrm{r}} / \mathrm{m}=(\mathrm{N}-\mathrm{mg} \cos \alpha) / \mathrm{m}$.
So

- The puck comes off the surface when $\mathrm{N}=0$.

That is, $y=2 / 3 R$.

Problem 4.9

Mass and spring suspended from the ceiling ...

(a) First, consider the horizontal spring.

Unstressed length $=\ell_{0}$;
force $\mathrm{F}=-\mathrm{k}\left(\ell-\ell_{0}\right)=-\mathrm{k} \xi$;
($\xi=$ displacement from horizontal equilibrium point)
potential energy $=1 / 2 \mathrm{k} \xi^{2}$.
(b) Now, the spring is suspended from the ceiling.

The x axis points downward from the suspension point.
Let $\mathrm{x}_{0}=$ the equilibrium position of m .
At equilibrium, $\mathrm{F}_{\mathrm{x}}=0$;

the force is $\mathrm{F}_{\mathrm{x}}=\mathrm{mg}-\mathrm{k}\left(\mathrm{x}-\ell_{0}\right)$, so $\mathrm{x}_{0}=\ell_{0}+\mathrm{mg} / \mathrm{k}$.
(c) Now suppose the mass is displaced from the equilibrium point; let $\mathrm{y}=$ the displacement;
ie. $y=x-x_{0}$.
Calculate the total potential energy.

$$
U=\frac{1}{2} k\left(x-l_{0}\right)^{2}-m g x+\text { constant }
$$

Reference point: $U(y=0)=0$

$$
\begin{aligned}
& =\frac{1}{2} k\left(x_{0}-l_{0}\right)^{2}-m g x_{0}+C \\
& \therefore C=-\frac{1}{2} k\left(x_{0}-l_{0}\right)^{2}+m g x_{0}
\end{aligned}
$$

$$
U(y)=\frac{1}{2} k\left(x_{0}+y-l_{0}\right)^{2}-m g\left(x_{0}+y\right)
$$

$$
-\frac{1}{2} k\left(x_{0}-l_{0}\right)^{2}+m g x_{0}
$$

Problem 4.10

Examples of partial derivatives ...

(a) $f(x, y, z)=a x^{2}+b x y+c y^{2}$
$\partial \mathrm{f} / \partial \mathrm{x}$
$\partial \mathrm{f} / \partial \mathrm{y}$
$\partial \mathrm{f} / \partial \mathrm{z}$
$=2 \mathrm{ax}+\mathrm{by}$
$=b x+2 c y$
$=0$
(b) $g(x, y, z)=\sin \left(a x y z^{2}\right)$
$\partial \mathrm{g} / \partial \mathrm{x}$
$\partial \mathrm{g} / \partial \mathrm{y}$
$\partial \mathrm{g} / \partial \mathrm{z}$
$=a y z^{2} \cos \left(a x y z^{2}\right)=a x z^{2} \cos \left(a x y z^{2}\right)=2 a x y z \cos \left(a x y z^{2}\right)$
(c) $h(x, y, z)=a \exp \left(x y / z^{2}\right) ; \quad$ let $S=x y / z^{2}$
$\partial \mathrm{h} / \partial \mathrm{x}$
$=a y / z^{2} \exp S \quad=a x / z^{2} \exp S$
$\partial \mathrm{h} / \partial \mathrm{z}$
$=-2 a x y / z^{3} \exp S$

Properties of the gradient ...

Use equation (4.35): $\quad \mathrm{df}=\nabla \mathrm{f} \cdot \mathrm{d} \mathbf{r}$
(a) Theorem: $\nabla \mathrm{f}$ is perpendicular to any surface on which $\mathrm{f}(\mathbf{r})$ is constant.

Proof:

Let dr be a small displacement on the surface. $\mathrm{df}=\mathrm{f}(\mathbf{r} \mathbf{+ d r})-\mathrm{f}(\mathbf{r})=0$ because f is constant on S .
$\nabla \mathrm{f} \cdot \mathrm{d} \mathbf{r}=0 \quad$ implies $\quad \nabla \mathrm{f}$ is \perp to $\mathrm{d} \mathbf{r}$.
 dr is an arbitrary displacement on S, so $\nabla \mathrm{f}$ is \perp to S.
(b) Theorem: $\nabla \mathrm{f}$ points in the direction in which the rate of change of $f(r)$ is maximum.
Proof: \quad Consider a small displacement $\delta \mathbf{r}=\hat{\mathbf{u}} \delta \mathrm{ll}$;
($\hat{\mathbf{u}}=\mathrm{a}$ unit vector and $\delta \mathrm{l}=$ an infinitesimal distance.)
Then $\quad \mathrm{f}(\mathbf{r}+\delta \mathbf{r})=\mathrm{f}(\mathbf{r})+\nabla \mathrm{f} \bullet \delta \mathbf{r} \quad$ by Taylor's theorem.
$=\mathrm{f}(\mathbf{r})+\nabla \mathrm{f} \cdot \hat{\mathbf{u}} \mathrm{\delta l}=\mathrm{f}(\mathbf{r})+|\nabla \mathrm{f}| \delta \mathrm{l} \cos \theta$
where θ is the angle between $\nabla \mathrm{f}$ and $\hat{\mathbf{u}}$.
The maximum change of f occurs for $\cos \theta=1$; that is, for $\theta=0$.
So, the maximum of $\delta f / \delta l$ occurs if the direction vector $\hat{\mathbf{u}}$ is in the same direction as $\nabla \mathrm{f}$.

Problem 4.23

Is the force conservative or nonconservative?

A conservative force has $\nabla \times \mathbf{F}=0 \quad, \quad$ and $\mathbf{F}=-\nabla \mathrm{U}$.
(a) $\mathbf{F}=\mathrm{k}\{\mathrm{x}, 2 \mathrm{y}, 3 \mathrm{z}\}$
$\nabla \times \boldsymbol{F}=\left|\begin{array}{ccc}e_{x} & e_{y} & e_{z} \\ \partial_{x} & \partial_{y} & \partial_{z} \\ x & 2 y & 3 z\end{array}\right|=e_{x} \cdot 0+e_{y} \cdot 0+e_{z} \cdot 0=0$
F is conservative; $\quad U=-1 / 2 k\left(x^{2}+2 y^{2}+3 z^{2}\right)$.
(b) $\mathbf{F}=\mathrm{k}\{\mathrm{y}, \mathrm{x}, 0\}$
$\nabla \times \boldsymbol{F}=\left|\begin{array}{ccc}e_{x} & e_{y} & e_{z} \\ \partial_{x} & \partial_{y} & \partial_{z} \\ y & x & 0\end{array}\right|=e_{x} \cdot 0+e_{y} \cdot 0+e_{z} \cdot(1-1)=0$

F is conservative; $\quad U=-k x y$.
(c) $\mathbf{F}=\mathrm{k}\{-\mathrm{y}, \mathrm{x}, 0\}$
$\nabla \times \boldsymbol{F}=\left|\begin{array}{ccc}e_{x} & e_{y} & e_{z} \\ \partial_{x} & \partial_{y} & \partial_{z} \\ -y & x & 0\end{array}\right|=e_{x} \cdot 0+e_{y} \cdot 0+e_{z} \cdot(1+1)=2 e_{z}$

F is not conservative.

