Homework Assignment #8

[37] Problem 4.26 A time-dependent gravitational field ... $\begin{array}{c} & \downarrow & \uparrow & \downarrow & mg \\ & \downarrow & mg & and \\ & g = g(4) \end{array}$ (a) Let U = mgy. Then $-\nabla U = -mg e_y = F$. (b) Let E = $\frac{1}{2} mv^2 + mgy$

Then

dE / dt = mv dv / dt + mg dy / dt + m (dg/dt) y= (m dv/dt + mg) v = 0 by Newton's second law; m dv/dt = F = - mg

Thus dE/dt = my(dg/dt) which is not 0.

8.1

[38 - part 1] Problem 4.28

A mass on a spring , using conservation of energy ...

F = -kx

$$U = \frac{1}{2} k x^2$$

Initial conditions (a sharp kick) are x(0) = 0 and $v(0) = v_0$;

then the mass oscillates between x = + A and x = - A.

(a) Conservation of energy

$$E = \frac{1}{2} m v^2 + \frac{1}{2} kx^2 = constant$$

$$\therefore$$
 v = $\sqrt{2E/m - kx^2/m}$

(b) The mass oscillates between +A and -A, so $E = \frac{1}{2} k A^2$.

Thus $v = \sqrt{(k/m)} \sqrt{(A^2 - x^2)}$

(Note : v = 0 at $x = \pm A$.)

Now,

$$dt' = \frac{dx'}{v(x')}$$

$$\int_{0}^{t} dt' = \int_{0}^{\infty} \frac{dx'}{v(x')}$$

$$t = \int_{0}^{\infty} \sqrt{\frac{m}{k}} \frac{dx'}{\sqrt{A^{2} - x'^{2}}} = \sqrt{\frac{m}{k}} \operatorname{arcsin}\left(\frac{x}{A}\right)$$

(c) In the motion from x = 0 to x = A, i.e. $t = \tau / 4$ (c)

(one quarter cycle)

t =	5° 1	The dr	$\frac{x'}{x^2 - x'^2} =$	V k ares	$\sin\left(\frac{x}{A}\right)$
t =	2=	$\sqrt{\frac{m}{K}}$ ar	csin1 = 1	K Z	
., 7	he peri	od is	7 = 2	TVM	

(b) Now use a computer to plot $U(\theta)$ for b = 0.9 r and b = 1.1 r.

(Set r = m = g = 1.)

仓

[40] Problem 4.34

The simple pendulum ...

(a) The potential energy $U(\phi)$ is

 $U(\varphi) = \operatorname{mg} y = \operatorname{mg} \left[\ell - \ell \cos \varphi \right] = \operatorname{mg} \ell \left(1 - \cos \varphi \right)$

The energy is

 $E = \frac{1}{2} mv^{2} + U = \frac{1}{2} m \ell^{2} (\phi')^{2} + mg \ell (1 - \cos \phi)$

(b) The energy is constant, so dE/dt = 0;

 $m \ell^2 \phi' \phi'' + mg \ell \sin \phi \phi' = 0$

Thus,

 $\varphi'' = -(g/\ell) \sin \varphi$

This is the same as $I \alpha = \Gamma$ (torque about the suspension point)

 $I = wl^{2}; \quad d = \phi$ $\vec{F} = \vec{r} \times \vec{F}; \quad \Gamma = -l \operatorname{mg} \operatorname{sin} \phi$ $wl^{2} \ddot{\phi} = -\operatorname{mg} l \operatorname{sin} \phi$ $\ddot{\phi} = -\frac{3}{l} \operatorname{sin} \phi$

\$ means do

8.5

(c) For small φ we can approximate sin $\varphi \approx \varphi$. With that, $\varphi'' = -(g/\ell) \varphi = -\omega^2 \varphi$ where $\omega = \sqrt{g/\ell}$ The small oscillations are harmonic, with period

$$\tau = 2\pi/\omega = 2\pi \sqrt{\ell/g}$$

[42] Problem 4.38

The simple pendulum again, not limited to small angles ...

The	equat m	of	motion :	
	1 1			
	φ		. 3/0 SM	þ

8.

(a) Let Φ be the amplitude of oscillation; calculate τ = the period of oscillation.

- The potential energy is $U(\phi) = \operatorname{mg} \ell (1 \cos \phi)$ and the energy is $E = \frac{1}{2} \operatorname{m} \ell^2 \phi'^2 + \operatorname{mg} \ell (1 - \cos \phi) = \operatorname{mg} \ell (1 - \cos \phi)$ Thus, $\phi'^2 = (2g/\ell) (\cos \phi - \cos \phi)$
- Separation of variables: $d\phi / dt = \phi'$ so $dt = d\phi / \phi'$

$$\int_{0}^{t} dt = \int_{0}^{\phi} \frac{d\phi}{\phi} = \int_{0}^{\phi} \frac{d\phi}{\sqrt{\frac{2g}{2g}(\cos \phi - \cos \overline{\phi})}}$$

$$\frac{f}{\sqrt{\frac{2g}{2g}(\cos \phi - \cos \overline{\phi})}}$$

$$\frac{f}{\sqrt{2g}} \int_{0}^{\phi} \frac{d\phi}{\sqrt{2(sN^{2} \frac{5}{2}/2 - sin^{2} \frac{4}{2}/2}}$$

$$One \quad quarter \quad cycle :$$

$$t = \frac{T}{4} \quad and \quad \phi: 0 \Rightarrow \overline{\Phi} :$$

$$Hus \quad \frac{T}{4} = \sqrt{\frac{T}{4g}} \int_{0}^{\overline{\Phi}} \frac{d\phi}{\sqrt{sin^{2} \frac{5}{2}/2} - sin^{2} \frac{4}{2}/2}}$$

$$\int_{1}^{2} \frac{T_{0}}{2\pi r} = \frac{T_{0}}{4rr}} \int_{0}^{\overline{\Phi}} \frac{d\phi}{\sqrt{sin^{2} \frac{5}{2}/2} - sin^{2} \frac{4}{2}/2}}$$

$$For \quad small \quad oscillations, \quad T_{0} = 2\pi \sqrt{\frac{2}{2g}}$$

仓

0.5

1.0

1.5 2.0

The limit of τ/τ_0 as Φ approaches π is ∞ , •

because $\varphi = \pi$ is an equilibrium point of the pendulum

(the inverted pendulum).