Homework Assignment \#8

[37] Problem 4.26

A time-dependent gravitational field ...

(a) Let $\mathrm{U}=\mathrm{mgy}$.

Then $\quad-\nabla \mathrm{U}=-\operatorname{mg} \mathbf{e}_{\mathbf{y}}=\mathbf{F}$.
(b) Let $\mathrm{E}=1 / 2 \mathrm{mv}^{2}+\mathrm{mgy}$

Then

$$
\begin{aligned}
\mathrm{dE} / \mathrm{dt}= & \underbrace{\mathrm{mv} \mathrm{dv} / \mathrm{dt}+\mathrm{mg} \mathrm{dy} / \mathrm{dt}+\mathrm{m}(\mathrm{dg} / \mathrm{dt}) \mathrm{y}}_{=(\mathrm{m} \mathrm{dv} / \mathrm{dt}+\mathrm{mg}) \mathrm{v}} \\
& =0 \text { by Newton's second law; } \mathrm{m} \mathrm{dv} / \mathrm{dt}=\mathrm{F}=-\mathrm{mg}
\end{aligned}
$$

Thus $\quad \mathrm{dE} / \mathrm{dt}=\mathrm{m} y(\mathrm{dg} / \mathrm{dt}) \quad$ which is not 0 .

[3 8-part 1] Problem 4.28

A mass on a spring , using conservation of energy ...
$\mathrm{F}=-\mathrm{kx}$
$\mathrm{U}=1 / 2 \mathrm{kx}$

Initial conditions (a sharp kick) are $\mathrm{x}(0)=0$ and $\mathrm{v}(0)=\mathrm{v}_{0}$;
then the mass oscillates between $x=+A$ and $x=-A$.
(a) Conservation of energy

$$
\begin{aligned}
& E=1 / 2 m v^{2}+1 / 2 k x^{2}=\text { constant } \\
& \therefore \quad v=\sqrt{2 E / m-k x^{2} / m}
\end{aligned}
$$

(b) The mass oscillates between +A and -A , so $\mathrm{E}=1 / 2 \mathrm{kA}^{2}$.

Thus $\quad v=\sqrt{(k / m)} \sqrt{\left(A^{2}-x^{2}\right)}$
(Note: $\mathrm{v}=0$ at $\mathrm{x}= \pm \mathrm{A}$.)
Now,

$$
\begin{aligned}
& d t^{\prime}=\frac{d x^{\prime}}{V\left(x^{\prime}\right)} \\
& \int_{0}^{t} d t^{\prime}=\int_{0}^{x} \frac{d x^{\prime}}{v\left(x^{\prime}\right)} \\
& t=\int_{0}^{x} \sqrt{\frac{m}{k}} \frac{d x^{\prime}}{\sqrt{A^{2}-x^{\prime 2}}}=\sqrt{\frac{m}{k}} \arcsin \left(\frac{x}{A}\right)
\end{aligned}
$$

(c) In the motion from $x=0$ to $x=A$, ie. $t=\tau / 4 \quad$ (one quarter cycle)

$$
\begin{aligned}
& t=\int_{0}^{x} \sqrt{\frac{m}{k}} \frac{d x^{\prime}}{\sqrt{A^{2}-x^{\prime 2}}}=\sqrt{\frac{m}{k}} \arcsin \left(\frac{x}{A}\right) \\
& t=\frac{\tau}{4}=\sqrt{\frac{m}{k}} \arcsin 1=\sqrt{\frac{m}{k}} \frac{\pi}{2} \\
& \therefore \text { The period is } \tau=2 \pi \sqrt{\frac{m}{k}}
\end{aligned}
$$

Suppose $U(x)=k x^{4}$.
(a)

The mass oscillates between +A and -A , with energy $\mathrm{E}=\mathrm{k} \mathrm{A}^{4}$.

Conservation of energy: $\quad \mathrm{kA}^{4}=1 / 2 \mathrm{~m} \mathrm{v}^{2}+\mathrm{kx} \mathrm{x}^{4}$
(b) The time to move

$$
t=\int_{0}^{x} \frac{d x^{\prime}}{v\left(x^{\prime}\right)}=\int_{0}^{x} \frac{d x^{\prime}}{\left[\frac{2 k}{m}\left(A^{4}-x^{4}\right)^{7}\right]^{1 / 2}}
$$

One quarter cycle:

$$
\tau / 4=\sqrt{\frac{y^{2}}{2 k}} \int_{0}^{A} \frac{d x^{\prime}}{\sqrt{A^{4}-x^{\prime 4}}}
$$

(c) Change the variable
of integration to $u=x^{\prime} / A$

Note $d x^{\prime}=A d u$ and $\sqrt{A^{4}-x^{\prime 4}}=A^{2} \sqrt{1-u^{4}}$

$$
\tau=4 \sqrt{\frac{m}{2 k}} \frac{A}{A^{2}} \int_{0}^{1} \frac{d u}{\sqrt{1-u^{4}}}=\frac{\text { constant }}{A}
$$

Thus $\quad \tau \propto 1 / \mathrm{A}$.
(d) Now use a computer to determine

COMPUTER CALCULATION the period of oscillation, for $\mathrm{m}=\mathrm{k}=\mathrm{A}=1$, is

$$
\tau=\sqrt{8} \int_{0}^{1} \frac{d u}{\sqrt{1-u^{4}}}=3.708 \text { in time units }
$$

A cube balanced on a cylinder ...

(a) The potential energy is

$$
\mathrm{U}(\theta)=\mathrm{mg}[(\mathrm{r}+\mathrm{b}) \cos \theta+\mathrm{r} \theta \sin \theta]
$$

where $\theta=$ the angle of rotation of the cube

COMPUTER CALCULATION
(b) Now use a computer to plot $U(\theta)$ for $b=0.9 \mathrm{r}$ and $\mathrm{b}=1.1 \mathrm{r}$.
(Set $\mathrm{r}=\mathrm{m}=\mathrm{g}=1$.)

The simple pendulum ...

(a) The potential energy $U(\varphi)$ is

$$
\mathrm{U}(\varphi)=\operatorname{mg} \mathrm{y}=\mathrm{mg}[\ell-\ell \cos \varphi]=\mathrm{mg} \ell(1-\cos \varphi)
$$

The energy is

$$
E=1 / 2 m v^{2}+U=1 / 2 m \ell^{2}\left(\varphi^{\prime}\right)^{2}+m g \ell(1-\cos \varphi)
$$

(b) The energy is constant, so $\mathrm{dE} / \mathrm{dt}=0$;

$$
\mathrm{m} \ell^{2} \varphi^{\prime} \varphi^{\prime \prime}+\mathrm{mg} \ell \sin \varphi \varphi^{\prime}=0
$$

Thus,

$$
\varphi^{\prime \prime}=-(\mathrm{g} / \ell) \sin \varphi
$$

This is the same as $\boldsymbol{I} \alpha=\Gamma \quad$ (torque about the suspension point)

$$
\begin{aligned}
& I=m l^{2} ; \quad \alpha=\ddot{\phi} \\
& \vec{r}=\vec{r} \times \vec{F} ; \quad r=-l m g \sin \phi \\
& m l^{2} \ddot{\phi}=-m g l \sin \phi \\
& \ddot{\phi}=-g / l \sin \phi
\end{aligned}
$$

(c) For small φ we can approximate $\sin \varphi \approx \varphi$. With that,

$$
\varphi^{\prime \prime}=-(\mathrm{g} / \ell) \varphi=-\omega^{2} \varphi \quad \text { where } \quad \omega=\sqrt{ } \mathrm{g} / \ell
$$

The small oscillations are harmonic, with period

$$
\tau=2 \pi / \omega=2 \pi \sqrt{ } \ell \overline{/ g}
$$

Wheel and two masses ...

(a) The potential energy is $\mathrm{U}(\varphi)=-\mathrm{Mg} \mathrm{y}_{\mathrm{M}}-\mathrm{mg}_{\mathrm{y}}^{\mathrm{m}}$
$y_{M}=R \cos \phi ; \quad y_{m}=l-\frac{3}{2} \pi R+R_{\phi}$ CHECK If $\phi=\frac{\pi}{2}$ then $\pi R+y_{m}=$
if $\phi=0$ then $\frac{3}{2} \pi R+y_{m}=l$; $y_{m}+\pi R+(\pi / 2-\phi) R=\ell$ of the wheel and
angle of rotation

\square
-

We'll choose the constant such that $U(\varphi=0)=0$;
then, $\quad U=+\operatorname{MgR}(1-\cos \varphi)-\operatorname{mgR} \varphi$
(b) The equilibrium condition is $\mathrm{d} U / \mathrm{d} \varphi=0$;

$$
M g R \sin \varphi-m g R=0 \quad \text { implies } \quad \sin \varphi_{0}=m / M
$$

(equilibrium)
If $\mathbf{m}>\mathbf{M}$ then the equilibrium is $\quad \mathrm{c}_{0}=3 \pi / 2$.
If $\mathbf{m}<\mathbf{M}$ then there are two equilibrium positions:

$$
\varphi_{0}=\pi / 2 \pm \psi \quad \text { where } \quad \psi=\arccos (\mathrm{m} / \mathrm{M})
$$

COMPUTER CALCULATION

(c) Uses a computer calculation.

Blue $\mathrm{m}=0.7 \mathrm{M}$: $\varphi=0$ is stable; orange $\mathrm{m}=0.8 \mathrm{M}: \varphi=0$ is unstable.
(d) From the computer calculation,
 the critical value of m / M is 0.725 .

The simple pendulum again, not limited to small angles ...

The equation of motion:

$$
\ddot{\phi}=-q / 2 \sin \phi
$$

(a) Let Φ be the amplitude of oscillation; calculate $\tau=$ the period of oscillation.

- The potential energy is $U(\varphi)=\operatorname{mg} \ell(1-\cos \varphi)$ and the energy is

$$
\mathrm{E}=1 / 2 \mathrm{~m} \ell^{2} \varphi^{\prime 2}+\mathrm{mg} \ell(1-\cos \varphi)=\mathrm{mg} \ell(1-\cos \Phi)
$$

Thus, $\quad \varphi^{\prime 2}=(2 \mathrm{~g} / \ell)(\cos \varphi-\cos \Phi)$

- Separation of variables: $d \varphi / d t=\varphi^{\prime} \quad$ so $\quad d t=d \varphi / \varphi^{\prime}$

$$
\begin{aligned}
& \int_{0}^{t} d t=\int_{0}^{\phi} \frac{d \phi^{\prime}}{\phi}=\int_{0}^{\phi} \frac{d \phi^{\prime}}{\sqrt{\frac{2 g}{l}\left(\cos \phi^{\prime}-\cos \Phi\right)}} \\
& t=\sqrt{\frac{l}{2 g}} \int_{0}^{\phi} \frac{d \phi^{\prime}}{\sqrt{2\left(\sin ^{2} \Phi / 2-\sin ^{2} \phi / 2\right)}}
\end{aligned}
$$

One quarter cycle:

$$
t=\tau / 4 \text { and } \phi^{\prime}: 0 \rightarrow \Phi
$$

thus $\quad \frac{\tau}{4}=\sqrt{\frac{l}{4 g}} \int_{0}^{\Phi} \frac{d \phi}{\sqrt{\sin ^{2} \Phi / 2-\sin ^{2} \phi / 2}}$

$$
G_{\frac{1}{2} \frac{\tau_{0}}{2 \pi}=\frac{\tau_{0}}{4 \pi}}^{\begin{array}{l}
\text { For small osillatic } \\
\tau_{0}=2 \pi \sqrt{l / g}
\end{array}}
$$

- Now change the variable of integration.

$$
\begin{aligned}
& \text { Let } u=\frac{\sin \phi / 2}{\sin \Phi / 2} \quad: 0 \rightarrow 1 \\
& u=\frac{1}{A} \sin \phi / 2 \text { where } A=\sin \Phi / 2 \\
& d u=\frac{1}{A} \frac{1}{2} \cos \phi / 2 d \phi=\frac{1}{2 A} \sqrt{1-A^{2} u^{2}} d \phi \\
& \text { and } \sqrt{\sin ^{2} \Phi / 2-\sin ^{2} \phi / 2}=\sqrt{A^{2}-A^{2} u^{2}}=A \sqrt{1-u^{2}} \\
& \text { Thus } \tau=\frac{\tau_{0}}{\pi} \int_{0}^{1} \frac{2 A d u}{\sqrt{1-A^{2} u^{2}}} \frac{1}{A \sqrt{1-u^{2}}} \\
& \tau=\frac{2 \tau_{0}}{\pi} \underbrace{\int_{0}^{1}}_{\text {This in } K\left(A^{3}\right)} .
\end{aligned}
$$

COMPUTER CALCULATION

(c) Use Mathematica to get the values of $K\left(A^{2}\right)$ where
$\mathrm{A}=\sin (\Phi / 2)$, and plot a graph of τ / τ_{0} versus Φ.

- The limit of τ / τ_{0} as Φ approaches π is ∞, because $\varphi=\pi$ is an equilibrium point of the pendulum (the inverted pendulum).

