Name

Homework Assignment 9 due Wednesday, November 1

Cover sheet : Staple this page in front of your solutions, with answers where indicated.

y

 \mathbf{x}

[41] Problem 4.41 and Problem 4.43 (No answer required here.)

[42] A mass m slides without friction in Earth's gravity down the track shown in the figure; the equation for the track is $y = x^2/a$ for x < 0 and y = 0 for x > 0. The initial point is $\{x,y\}=\{-a,a\}$ and the initial velocity is 0. (A) Calculate dy/dt when the height is y, in the form dy/dt = f(y).

Answer: The time in part (B) is ...

1.874 SQRT[a/g] (3 points)

[43] Problem 5.3.*

Answer: The parameter k is ... k = m g l (1 point)

[44] Problem 5.5.*

Answer: Express C in terms of B_1 and B_2 ... $C = B_1 - i B_2$ (1 point)

[45] Problem 5.9.*

 $\tau = 1.047 \, s \, (1 \, point)$ Answer: The period is ...

[46] Problem 5.12.**

(No answer is required here.)

Assume $a < l_0$. Show that $\{x,y\} = \{0,0\}$ is an unstable [47] Problem 5.18.*** equilibrium, and explain why. (3 points)

The potential energy is $kx^2 + k(a - l_0)y^2/a$. If $a < l_0$ then the coefficient of y^2 is negative; i.e., y = 0 is an unstable equilibrium. **Explain why**: if the springs are compressed ($a < l_0$) then the mass will move to + or - y to release the compressions.