\qquad grading key \qquad
Homework Assignment \#12 due in class Monday November 28
Staple this cover sheet in front of your solutions.
Write the requested answers on this sheet, and do the detailed solutions on your own paper.
[61] Problem $7.2 \star$
Answer: Write down a general solution of Lagrange's equation.
$\mathrm{x}(\mathrm{t})=\mathrm{A} \cos (\omega \mathrm{t}-\delta)$ where $\omega=\sqrt{ }(\mathrm{k} / \mathrm{m})$
[62] Problem $7.3 \star$
Answer: Write down the solution with these initial values: $\mathrm{x}(0)=\mathrm{A}, \mathrm{v}_{\mathrm{x}}(0)=0$ and $\mathrm{y}(0)=0, \mathrm{v}_{\mathrm{y}}(0)=\mathrm{B}$. Prove that the trajectory is an ellipse, and sketch a graph of the trajectory. $x=A \cos (\omega t)$ and $y=(B / \omega) \sin (\omega t)$. Note that $(x / A)^{2}+(y / b)^{2}=1$ which is an ellipse.
[63] Problems $7.8 \star \star$
Answer: Write general solutions for $\mathrm{X}(\mathrm{t})$ and $\mathrm{x}(\mathrm{t})$.
$X(t)=c_{1}+c_{2} t$ and $x(t)=A \cos (\omega t-\delta)$ where $\omega=\sqrt{ }(2 k / m)$
2 points

[64] Problems $7.14 \star$

Answer: The so-called "crude model" does not resemble a real yo-yo at all. In a real yo-yo there are two radii - the large radius (R) of the sides and the much smaller radius (r) of the axle.
Calculate the acceleration for the real yo-yo and write the result here.
$d^{2} x / d t^{2}=2 r^{2} /\left(R^{2}+2 r^{2}\right) g$
1 point
[65] Problem 7.21
Answer: If the the bead is released at time 0 with $r=R / 2$ and $\mathrm{dr} / \mathrm{dt}=0$, calculate the time when the bead flies off the end of the rod; $\mathrm{R}=$ length of the rod. Write the time here.
time $=1.317 / \omega$

[66] Problem $7.31 \star \star$

Answer: Try to solve the equations with $\mathrm{x}(\mathrm{t})=\mathrm{A} \exp (\mathrm{i} \omega \mathrm{t})$ and $\varphi(\mathrm{t})=\mathrm{B} \exp (\mathrm{i} \omega \mathrm{t})$. If possible determine ω.
The solution has $\left(k-m \omega^{2}\right) A=m g B$ and $M \omega^{2} A=\left(m g-M L \omega^{2}\right) B$.
Therefore, $\left(\mathrm{k}-\mathrm{m} \omega^{2}\right) /\left(\mathrm{M} \omega^{2}\right)=\mathrm{mg} /\left(\mathrm{mg}-\mathrm{ML} \omega^{2}\right)$
2 points
[67] Problem $7.43 \star \star \star$ [Computer]
Answer: Hand in the computer program and the plots.

Homework Assignment \#/2
[61] Problem 7.2

$$
\mathbb{L}=\frac{1}{2} m \dot{x}^{2}-\frac{1}{2} k x^{2}
$$

$$
\frac{\partial \mathscr{I}}{\partial x}=\frac{d}{d t}\left(\frac{\partial \mathcal{I}}{\partial \dot{x}}\right) \Rightarrow-k x=m x^{\prime \prime}
$$

Solution is $\quad x=A \cos (\omega t-\delta)$ when $\omega=\sqrt{\frac{k}{m}}$
[62] Problem 7.3

$$
\mathcal{L}=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right)-\frac{1}{2} k\left(x^{2}+y^{2}\right)
$$

x equation i $-k x=m \ddot{x} \Rightarrow x=A_{x} \cos \left(\omega t-\delta_{x}\right)$
y equation $\dot{y}-h y=m \dot{y} \Rightarrow y=A_{y} \cos \left(\omega t-\delta_{y}\right)$
Suppose $x(0)=A, v_{x}(0)=0$; then $x=A \cos \omega t$; and $y(0)=0, v_{y}(0)=B$; then $y=\frac{B}{\omega} \sin \omega t$ Not $\left(\frac{x}{A}\right)^{2}+\left(\frac{y}{B / \omega 0}\right)^{2}=1$ so the trajectory is an ellipse.
[63] Problem 7.8

(a) $\mathscr{L}=\frac{1}{2} m\left(\dot{x}_{1}^{2}+\dot{x}_{2}^{2}\right)-\frac{1}{2} k\left(x_{1}-x_{2}-l\right)^{2}$
(b) Let $Z=\frac{1}{2}\left(x_{1}+x_{2}\right)$ ($=$ te $<\mu$ positia) and $x=x_{1}-x_{2}-l \leqslant=$ the extensina
Noto $Z+\frac{x}{2}=x_{1}-\frac{l}{2}$ so $\dot{x}_{1}=\frac{1}{\underline{x}}+\frac{1}{2} \dot{x}$
and $\underline{X}-\frac{x}{2}=x_{2}+l / 2$ so $\dot{x}_{2}=\dot{x}-\frac{1}{2} \dot{x}$

$$
\dot{x}_{1}^{2}+z_{2}^{2}=2 \dot{\underline{x}}^{2}+\frac{1}{2} \dot{x}^{2}
$$

Te Lugrangion in $\mathscr{L}=m \dot{\underline{x}}^{2}+\frac{1}{4} m \dot{x}^{2}-\frac{1}{2} k x^{2}$

$$
\begin{aligned}
& \frac{\partial \mathcal{I}}{\partial I}-\frac{d}{d t}\left(\frac{\partial \mathscr{I}}{\partial \underline{x}}\right)=0 \quad \text { inpties } \quad \text { Z }=0 ; \\
& \frac{\partial \Psi}{\partial x}-\frac{d}{d t}\left(\frac{\partial \mathcal{I}}{\partial \dot{x}}\right)=0 \quad \text { inghes }-k x-\frac{m}{2} x^{\prime \prime}=0 .
\end{aligned}
$$

(c) $\xi X(t)=C_{1}+C_{2} t ;$ the $C M$ moves wit constunt velocity
§ $x(t)=A \cos (\omega t-\delta)$ where $\omega=\sqrt{\frac{2 k}{m}}$; the extensim undergoes siriqle harmonic motion.
[64) Problem 7.14

Generuluzed courlinet $=x$

$$
\begin{aligned}
T=\frac{1}{2} m \dot{x}^{2}+\frac{1}{2} I \dot{\phi}^{2} \text { whee } I & =\text { monat of inertice } \\
& =\frac{1}{2} m R^{2}
\end{aligned}
$$

$$
=\frac{1}{2} m R^{2}
$$

Also, $x=x_{0}=R \phi$ so $\dot{\phi}=\dot{x} / R$

$$
\begin{aligned}
& T=\frac{1}{2} m \dot{x}^{2}+\frac{1}{2} \cdot \frac{1}{2} m R^{2} \cdot \frac{\dot{x}^{2}}{R^{2}}=\frac{3}{4} m \dot{x}^{2} \\
& U=-m y\left(x-x_{0}\right) \\
& \mathcal{L}=\frac{3}{4} m \dot{x}^{2}+m y x+\text { cnstmAt }
\end{aligned}
$$

Lagrange quation b' $\frac{\partial I}{\partial x}=\frac{d}{d t}\left(\frac{\partial L}{\partial l}\right)$

$$
m g=\frac{3}{2} m \ddot{x} \Rightarrow \quad \ddot{x}=\frac{2}{3} g
$$

For a"real" yo-yo
\sim neghetism

$$
T=\frac{1}{2} M \dot{x}^{2}+\frac{1}{2} I \dot{\phi}^{2} \text { whe } I \approx \frac{1}{2} M R^{2} j
$$

and $x-x_{0}=r \phi$ so $\dot{x}=r \dot{\phi}$

$$
\begin{aligned}
& T=\frac{1}{2} M \dot{x}^{2}+\frac{1}{2} \frac{M R^{2}}{2} \frac{\dot{x}^{2}}{r^{2}}=\frac{1}{2}\left(M+\frac{M}{2} \frac{R^{2}}{r^{2}}\right) \dot{x}^{2} \\
& V=-M g\left(x-x_{0}\right)
\end{aligned}
$$

Thus $M g=M\left(1+\frac{R^{2}}{2 r^{2}}\right) \ddot{x} \Rightarrow \quad \ddot{x}=\frac{2 r^{2}}{R^{2}+2 r^{2}} g$

Problem 7.21

$T=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right)$ the $x=r \cos \omega t$ and $y=r \sin \omega t$.

$$
\left.\left.\begin{array}{l}
\dot{x}=\{\cos \omega t-r \omega \sin \omega t \\
\dot{y}=\dot{r} \sin \omega t+r \omega \cos \omega t
\end{array}\right\} \quad \dot{x}^{2}+\dot{y}^{2}=\dot{r}^{2}+r^{2} \omega^{2}\right\} \begin{aligned}
& v=0 \\
& \dot{y}=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \omega^{2}\right) \\
& \frac{\partial \mathscr{L}}{\partial r}-\frac{d}{d t} \frac{\partial y}{\partial \dot{r}}=0 \Rightarrow m \omega^{2} r-m \ddot{r}
\end{aligned}
$$

The equation of motion $s^{\prime \prime} \quad r^{\prime \prime}=\omega^{2} r$.
Th solution is $r(t)=A e^{\omega t}+B e^{-\omega t}$ when $r(0)=A+B$ and $\dot{r}(0)=\omega(A-B)$.

Suppose $r(0)=R / 2$ and $\dot{r}(0)=0$
Ten $r(t)=\frac{R}{4}\left(e^{\omega t}+e^{-\omega t}\right)=\frac{R}{2} \cosh (\omega t)$
The bead flies off the end y the wot when $r(t)=R$
The tine is $\omega t=\operatorname{arccosh}(2)=1.317$

$$
t=\frac{1,317}{\omega}
$$

[66] Problem 7,31

(a) The Lagrangian (x, p)

$$
\begin{aligned}
T & =\frac{1}{2} m x^{\prime 2}+\frac{1}{2} M\left(\dot{x}_{b}^{2}+\dot{y}_{b}^{2}\right) \text { nose } \begin{array}{l}
\dot{x}_{b}=x+L \sin \phi \\
y_{b}=L \cos \phi
\end{array} \\
T & =\frac{1}{2} m \dot{x}^{2}+\frac{1}{2} M\left[(\dot{x}+L \dot{\phi} \cos \phi)^{2}+(-L \dot{\phi} \sin \phi)^{2}\right] \\
& =\frac{1}{2} m^{\prime 2}+\frac{1}{2} M\left[\dot{x}^{2}+L^{2} \dot{\phi}^{2}+2 L \dot{x} \dot{\phi} \cos \phi\right]
\end{aligned}
$$

And $v=-m g y+\frac{1}{2} k x^{2}=-m g L \cos \phi+\frac{1}{2} k x^{2}$

$$
\mathscr{L}=\frac{1}{2}(m+M) \dot{x}^{2}+\frac{1}{2} M L^{2} \dot{\phi}^{2}+M L \dot{x} \dot{\phi} \cos \phi+m g L \cos \psi=\frac{1}{2} h x^{2}
$$

(b) Assume x and ϕ are soncll. Then apprimate

$$
\mathcal{J} \approx \frac{1}{2}(m+M) \dot{x}^{2}+\frac{1}{2} M L^{2} \dot{q}^{-2}+M L \dot{x} \dot{\phi}+m g L\left[1-\frac{1}{2} f^{2}\right]=\frac{1}{2} k x^{2}
$$

Lagrange's yurctive

$$
\begin{array}{ll}
\frac{\partial \mathscr{L}}{\partial x}=\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}}\right) \Rightarrow & -k x \\
\frac{\partial \mathscr{L}}{\partial \psi}=\frac{d}{d t}\left(\frac{\partial I}{\partial \dot{\psi}}\right) \Rightarrow & -m g L \phi=M+M L^{\prime \prime} \phi \\
M L^{2} \ddot{\phi}+M L \dot{x}^{\prime \prime}
\end{array}
$$

Now try $x(t)=A e^{i \omega t}$ and $\phi(t)=B e^{i \omega t}$

$$
\begin{aligned}
& -k A=-(m+M) \omega^{2} A-M L \omega^{2} B=-m \omega^{2} A-M \omega^{2} A-M L \omega^{2} B \\
& -m g B=-M L^{2} \omega^{2} B-M L \omega^{2} A \text { or }-m g B=-M L \omega^{2} B-M \omega^{2} A \\
& \left\{\begin{array}{l}
-k A=-m \omega^{2} A-m g B \\
M \omega^{2} A=m g B-M L \omega^{2} B
\end{array}\right.
\end{aligned}
$$

$$
\left[\begin{array}{lr}
-k+m \omega^{2} & m g \\
M w^{2} & -m g+k \omega_{0}^{2}
\end{array}\right]\binom{A}{B}=0
$$

in order to have a nontrivial ssuthin, the determinant must equal a

$$
\begin{gathered}
\left(m \omega^{2}-k\right)\left(M L \omega^{2}-m g\right)-m g M \omega^{2}=0 \\
m M L \omega^{4}+\left(-k M L-m^{2} g\right) \omega^{2}+k m g=0 \\
-m g M
\end{gathered}
$$

For example, consider these numerical valves (in upporoprito its) from Problem 14. 19

$$
\begin{gathered}
m=M=L=g=1 \text { and } \quad k=2 \\
\omega^{2}=1+1 \pm \sqrt{(1+1)^{2}-2}=2 \pm \sqrt{2}
\end{gathered}
$$

[67] Problem \%.43
Initial conlitius: $p=0$ and $\dot{\phi}=0$.

(ac) $\mathscr{L}=T-V$ when $T=\frac{1}{2} M\left(\dot{x}^{2}+\dot{Y}^{2}\right)+\frac{1}{2} m \dot{\xi}^{2}$

$$
\stackrel{L}{\xi}=R
$$

$$
\xi=\xi_{0}+R \phi
$$

Equatim y notion: $\frac{\partial t}{\partial \phi}=\frac{d}{d T}\left(\frac{\partial \tau}{\partial \phi}\right)$

$$
\Rightarrow(M+m) R_{\phi}^{\prime \prime}=-M y \sin \phi+m g
$$

Equilibrium points: $\ddot{\phi}=0$ vinghes $\sin \phi=\frac{M}{M}$ If $M<M$ then there \hat{n} an equintiorium att $\arcsin (M / M)$.
(b) Plot $U(\phi)$ for $m<M$. \& Computer Plot \#1
(c) Pick these parameter values: $M=g=R=1, m=0,7$. Solve te efuatim \& motion of $0 \leq t \leq 20$. A COMPUTER PLOT
(d) Same for $m=0.8$ COMPUTER ROT \#3

$$
\begin{aligned}
& T=\frac{1}{2} M R^{2} \dot{\phi}^{2}+\frac{1}{2} m R^{2} \dot{\phi}^{2}=\frac{1}{2}(M+m) R^{2} \dot{\phi}^{2} \\
& U=-M g y-m g \xi=-M g R \cos \phi-m y R_{\phi}+\cos \alpha . \\
& \mathcal{L}=\frac{1}{2}(M+m) R^{2} \phi^{2}+M g R \cos \phi+m g R \phi
\end{aligned}
$$

Problem 7.43

```
\(\ln [14]:=\mathrm{bs}=\{\) FontFamily \(\rightarrow\) "Helvetica", FontSize \(\rightarrow\) 14, FontWeight \(\rightarrow\) "Bold" \(\}\)
Out[14]= \(\{\) FontFamily \(\rightarrow\) Helvetica, FontSize \(\rightarrow\) 14, FontWeight \(\rightarrow\) Bold \(\}\)
\(\ln [95]:=\) (* b *)
    (* Plot U( \(\phi\) ) for \(m<1\) *)
    \(\{\mathrm{M}, \mathrm{g}, \mathrm{R}, \mathrm{m}\}=\{1,1,1,0.6\}\);
    \(\mathrm{U}\left[\phi_{-}\right]:=-\mathrm{M} * \mathrm{~g} * \mathrm{R} * \operatorname{Cos}[\phi]-\mathrm{m} * \mathrm{~g} * \mathrm{R} * \phi\)
    Plot[U[ \(\phi\) ], \(\{\phi,-\mathrm{Pi}, 4 \mathrm{Pi}\}\), AxesLabel \(\rightarrow\{" \phi ", \mathrm{U}(\phi) "\}\),
        PlotLabel \(\rightarrow\) "Part (b) for \(m=0.6 \mathrm{M} "\),
        BaseStyle \(\rightarrow\) bs]
```


Part (b) for $\mathbf{m}=0.6 \mathrm{M}$

(* C *)
? NDSolve

NDSolve[eqns, $\left.u,\left\{x, x_{m i n}, x_{m a x}\right\}\right]$ finds a numerical solution to the ordinary differential equations eqns for the function u with the independent variable x in the range $x_{\min }$ to $x_{\max }$.
NDSolve[eqns, $\left.u,\left\{x, x_{\text {min }}, x_{\text {max }}\right\},\left\{y, y_{\text {min }}, y_{\text {max }}\right\}\right]$ solves the partial differential equations eqns over a rectangular region.
NDSolve[eqns, $u,\{x, y\} \in \Omega$] solves the partial differential equations eqns over the region Ω.
NDSolve[eqns, $u,\left\{t, t_{\text {min }}, t_{\text {max }}\right\},\{x, y\} \in \Omega$] solves the time-dependent partial differential equations eqns over the region Ω.
NDSolve[eqns, $\left\{u_{1}, u_{2}, \ldots\right\}, \ldots$] solves for the functions u_{i}. >>

```
{M, g, R, m} = {1, 1, 1, 0.7};
eqs ={(M+m)*R*phi''[t] == - M * g* Sin[phi[t]] +m*g,
    phi[0] == 0, phi '[0] == 0};
RR = NDSolve[eqs, phi, {t, 0, 20}];
angle = phi / . RR[[1]];
Plot[angle[t], {t, 0, 20}, AxesLabel }->{"t", "\phi(t)"}
    PlotLabel }->\mathrm{ "Part (c)",
    BaseStyle }->\mathrm{ bs]
```


Part (c)

$\ln [90]:=(\boldsymbol{*} \mathbf{d} \boldsymbol{*})$
$\{M, g, R, m\}=\{1,1,1,0.8\} ;$
eqs $=\left\{(M+m) * R * \operatorname{phi} '^{\prime}[t]==-M * g * \operatorname{Sin}[p h i[t]]+m * g\right.$,
phi [0] == 0, phi' [0] == 0\};
RR = NDSolve[eqs, phi, \{t, 0, 20\}];
angle = phi /. RR[[1]];
Plot[angle[t], $\{t, 0,20\}$, AxesLabel $\rightarrow\{" t ", " \phi(t) "\}$, PlotLabel \rightarrow "Part (d)",
Basestyle \rightarrow bs]

Part (d)
$\phi(\mathrm{t})$

