In Class Work for Friday September 8

[1] Consider a projectile in Earth's gravity, neglecting air resistance.

Let x be the horizontal coordinate and y = the vertical coordinate.

The initial conditions are

$$x(0) = 0$$
; $y(0) = h$; $v_x(0) = v_0 \cos \theta$; $v_y(0) = v_0 \sin \theta$.

(A) Sketch a diagram.

(B) Write an equation for x"(t). ["means d^2 / dt^2] x''(t) = 0(C) Write an equation for y"(t). y''(t) = -q

(D) Calculate the time t_f when the projectile hits the ground (y = 0).

```
(v0/q) \sin\theta + sqrt[(v0/q \sin\theta)^2 + 2 q h]
```

(E) Calculate the horizontal distance where the projectile hits the ground.

[2] A car drives around a circular track (radius = R) with constantly increasing speed.

The angle $\boldsymbol{\phi}$ as a function of time t is

 $\varphi(t) = \frac{1}{2}\beta t^2$ where β is constant.

(A) Sketch a drawing of the car on the track.

(B) Write equations for the coordinates x(t) and y(t).

$$x(t) = R \cos \phi(t)$$
; $y(t) = R \sin \phi(t)$

(C) Calculate the velocity and acceleration vectors, $\mathbf{v}(t)$ and $\mathbf{a}(t)$.

 $\boldsymbol{v}(t) = \boldsymbol{x}'(t) \boldsymbol{e}_{\boldsymbol{x}} + \boldsymbol{y}'(t) \boldsymbol{e}_{\boldsymbol{y}}$ $\boldsymbol{a}(t) = \boldsymbol{x}''(t) \boldsymbol{e}_{\boldsymbol{x}} + \boldsymbol{y}''(t) \boldsymbol{e}_{\boldsymbol{y}}$

(D) Calculate the radial acceleration $a_r(t)$.

(E) Make a drawing that shows the velocity and acceleration vectors when the car first passes the point at $\varphi = \pi$.

NAME

In Class Work (Friday September 8) - ANSWER SHEET

INSTRUCTIONS FOR THIS PAGE : WRITE YOUR <u>ANSWERS ONLY</u>; DO NOT SHOW YOUR WORK. Do use scratch paper do figure out the answers.

PROBLEM #1 A) DIAGRAM	
B) x"(t) =	
C) y"(t) =	
D) $t_f =$	
E) $x_f =$	
PROBLEM #2 A) DRAWING	
B) $x(t) =$	
B) y(t) =	
C) Vector $\mathbf{v}(t) =$	
C) Vector $\mathbf{a}(t) =$	

In Class Work (Friday September 8) - ANSWER SHEET

INSTRUCTIONS FOR THIS PAGE : WRITE YOUR <u>ANSWERS ONLY</u>; DO NOT SHOW YOUR WORK. Do use scratch paper do figure out the answers.

D) $a_{r}(t) =$

E) DRAWING