## In Class Work for Friday September 8

[1] Consider a projectile in Earth's gravity, neglecting air resistance.
Let x be the horizontal coordinate and $\mathrm{y}=$ the vertical coordinate.
The initial conditions are

$$
\mathrm{x}(0)=0 ; \mathrm{y}(0)=\mathrm{h} ; \mathrm{v}_{\mathrm{x}}(0)=\mathrm{v}_{0} \cos \theta ; \mathrm{v}_{\mathrm{y}}(0)=\mathrm{v}_{0} \sin \theta .
$$

(A) Sketch a diagram.
(B) Write an equation for $\mathrm{x}^{\prime \prime}(\mathrm{t}) . \quad\left[\right.$ " means $\left.\mathrm{d}^{2} / \mathrm{dt}^{2}\right] \quad \boldsymbol{x}^{\prime \prime}(t)=0$
(C) Write an equation for $y^{\prime \prime}(\mathrm{t})$.

$$
y^{\prime \prime}(t)=-g
$$

(D) Calculate the time $\mathrm{t}_{\mathrm{f}}$ when the projectile hits the ground $(\mathrm{y}=0)$.

$$
(v 0 / g) \sin \theta+s q r t\left[(v 0 / g \sin \theta)^{2}+2 g h\right]
$$

(E) Calculate the horizontal distance where the projectile hits the ground.
[2] A car drives around a circular track (radius $=R$ ) with constantly increasing speed.
The angle $\varphi$ as a function of time $t$ is

$$
\varphi(\mathrm{t})=1 / 2 \beta \mathrm{t}^{2} \quad \text { where } \beta \text { is constant. }
$$

(A) Sketch a drawing of the car on the track.
(B) Write equations for the coordinates $\mathrm{x}(\mathrm{t})$ and $\mathrm{y}(\mathrm{t})$.

$$
x(t)=R \cos \phi(t) ; \quad y(t)=R \sin \phi(t)
$$

(C) Calculate the velocity and acceleration vectors, $\mathbf{v}(\mathrm{t})$ and $\mathbf{a}(\mathrm{t})$.

$$
\begin{aligned}
& \boldsymbol{v}(t)=x^{\prime}(t) \boldsymbol{e}_{x}+y^{\prime}(t) \boldsymbol{e}_{y} \\
& \boldsymbol{a}(t)=x^{\prime \prime}(t) \boldsymbol{e}_{x}+y^{\prime \prime}(t) \boldsymbol{e}_{y}
\end{aligned}
$$

(D) Calculate the radial acceleration $\mathrm{a}_{\mathrm{r}}(\mathrm{t})$.
(E) Make a drawing that shows the velocity and acceleration vectors when the car first passes the point at $\varphi=\pi$.

NAME $\qquad$

## In Class Work (Friday September 8) - ANSWER SHEET

 INSTRUCTIONS FOR THIS PAGE :WRITE YOUR ANSWERS ONLY; DO NOT SHOW YOUR WORK.
Do use scratch paper do figure out the answers.

PROBLEM \#1
A) DIAGRAM
B) $x^{\prime \prime}(t)=$
C) $y^{\prime \prime}(t)=$
D) $t_{f}=$
$\qquad$
E) $\mathrm{x}_{\mathrm{f}}=$

PROBLEM \#2
A) DRAWING
B) $x(t)=$
B) $y(t)=$
C) $\operatorname{Vector} \mathbf{v}(\mathrm{t})=$
C) Vector $\mathbf{a}(\mathrm{t})=$

NAME

## In Class Work (Friday September 8) - ANSWER SHEET

## INSTRUCTIONS FOR THIS PAGE :

WRITE YOUR ANSWERS ONLY; DO NOT SHOW YOUR WORK.
Do use scratch paper do figure out the answers.
D) $a_{r}(t)=$
E) DRAWING

