Homework Assignment \#2
due in class Friday, September 15
[6] Problem 1.35 *
[7] Problem 1.38 *
[8] Problem $1.39^{* *}$
[9] Problem 1.44 *
[10] Problem $1.51^{* * *}$ [computer]
Use the cover sheet.

Computer problems.

- Your best bet is to use Mathematica.
- It is available in many MSU microcomputer labs; e.g., 106 Farrell Hall or 1210 Anthony Hall.
- Or, get a free student copy for your laptop.
- If you are not familiar with Mathematica, then do the Mathematica tutorial.

THINGS TO STUDY

SECTION 1.6 CARTESIAN COORDINATES

$$
\vec{r}(t)=x(t) \hat{e}_{x}+y(t) \hat{e}_{y}+z(t) \hat{e}_{z}
$$

$$
\begin{aligned}
& \vec{F}(\vec{r})=F_{x} \hat{e}_{x}+F_{y} \hat{e}_{y}+F_{z} \hat{e}_{z} \\
& \ldots \ldots \vec{r} \text { depends on position } \\
& \vec{a}=\overrightarrow{\vec{r}}=\frac{\vec{c}_{(\vec{r})}}{m} \\
& a_{x}=\ddot{x}=\frac{F_{x}}{m} \text { etc }
\end{aligned}
$$

Example 1.1

A block sliding down an inclined plane

Determine the motion.

- Use the Cartesian coordinates x, y, shown in the figure.
- The result is
$m d v_{x} / d t=m g(\sin \theta-\mu \cos \theta) ;$
i.e., constant acceleration along x.
- $\mu=$ coefficient of friction (PHY 183)

Another example

A projectile in Earth's gravity (PHY 183)

Determine the motion.

Neglecting air resistance ...
2D Cartesian coordinates $x=$ horizontal coordinate $y=$ vertical coordinate

- $F_{x}=0$ and $F_{y}=-m g$
- The trajectory is a parabola;

$$
\begin{aligned}
& x(t)=x_{0}+v_{0 x} t \\
& y(t)=y_{0}+v_{0 y} t-\frac{1}{2} g t^{2}
\end{aligned}
$$

SECTION 1.7
PLANE POLAR COORDINATES

Know (and memorize!) the equations that relate plane polar coordinates (r and θ) and Cartesian coordinates (x and y).

$$
\begin{gathered}
x=r \cos \varphi \\
y=r \sin \varphi \\
r=\operatorname{sqrt}\left(x^{2}+y^{2}\right) \\
\tan \varphi=y / x
\end{gathered}
$$

etc.

Example 1.2

The oscillating skateboard
Figure 1.14

Figure 1.14 A skateboard in a semicircular trough of radius R. The board's position is specified by the angle ϕ measured up from the bottom. The two forces on the skateboard are its weight $\mathbf{w}=m \mathrm{~g}$ and the normal force \mathbf{N}.
(It is just the same as a simple pendulum - a mass on a string.)

- It is natural to use plane polar coordinates, $r(t)$ and $\varphi(\dagger)$.
- (Do you see why?)
- The general equations for polar components of acceleration are, in general,

$$
a_{r}=\ddot{r}-r \dot{\phi}^{2} ; \quad a_{\phi}=r \ddot{\phi}+2 \dot{r} \dot{\phi}
$$

- For circular motion, $r(t)=R$; then

$$
-R \dot{\phi}^{2}=(m g \cos \phi-N) \text { and } R \ddot{\phi}=(-m y \sin \phi) / m
$$

$$
\ddot{\phi}=-\frac{g}{R} \sin \phi
$$

IN-CLASS EXERCISES

