Chapter 2.

Projectiles; and Charged Particles
projectiles with air resistance
\square 2.1. Air resistance
\square 2.2. Linear air resistance

- 2.3. Trajectory and Range
\square 2.4. Quadratic air resistance
charged particle in a magnetic field
\square 2.5. Charge in B field
\square 2.6. Complex Exponentials
- 2.7. Solve q in B

2.1-Aerodynamic forces

When an object moves through air, it experiences a force.

The force is exerted by the air on the object; the reaction force is exerted by the object on the air.

The force on the object can be resolved into two components:
"drag" = component of force in the direction of $-v$
"lift" = component of force in the direction of $-\boldsymbol{g}$

Air resistance

We will only consider the drag force; denote it by \boldsymbol{f}.

Figure 2.1
Motion of a projectile

The force of air resistance

- The direction of \boldsymbol{f} is parallel to $-v$.
- The magnitude of \boldsymbol{f} depends on v (speed) and on other properties of the object.
- We'll write $\boldsymbol{f}=f(v)\left(-\boldsymbol{e}_{v}\right)$;
\square and we'll write the magnitude as

$$
f(v)=\mathrm{bv}+\mathrm{c} \mathrm{v}^{2}=f_{\text {lin }}+f_{\text {quad }}
$$

$$
\begin{gathered}
\boldsymbol{f}=f(v)\left(-\boldsymbol{e}_{\boldsymbol{v}}\right) \\
f(v)=\mathrm{bv}+\mathrm{c} \mathrm{v}^{2}=f_{\mathrm{lin}}+f_{\text {quad }}
\end{gathered}
$$

- $f_{\text {lin }}=\mathrm{b} v$ comes from viscosity;
for a sphere,
$\mathrm{b}=\beta \mathrm{D}$
($\mathrm{D}=$ diameter)
$\beta=3 \pi \eta$
(η = viscosity)
- $f_{\text {quad }}=\mathrm{c} \mathrm{v}^{2}$ comes from
the inertia of air;
for a sphere,
$\mathrm{c}=0.25 \rho \mathrm{~A}=\gamma \mathrm{D}^{2}$
$\gamma \propto \rho \quad(\rho=$ density $)$

Example 2.1 BASEBALLS AND LIQUID DROPS
\rightarrow comparing the relative importance of $f_{\text {quad }}$ and $f_{\text {lin }}$; consider 3 cases.
For a sphere moving through air at STP,

$$
\begin{aligned}
& f_{\text {lin }}=\beta D v \text { and } \beta=1.6 \times 10^{-4} \mathrm{Ns} / \mathrm{m}^{2} \\
& f_{\text {quad }}=\gamma D^{2} v^{2} \text { and } \gamma=0.25 \mathrm{Ns} / \mathrm{sm}^{4}
\end{aligned}
$$

in MKS units.

	D	v $[\mathrm{~m} / \mathrm{s}]$	$f_{\text {quad }} / f_{\text {lin }}$	dominant
1. baseball	7 cm	5	600	cv^{2}
2. small raindrop	1 mm	0.6	1	comparable
3. tiny oil drop (Millikan expt)	1.5 mm	$5 \times 10^{--5}$	10^{-7}	bs

2.2 Linear air resistance

Now we'll specialize to $c=0$.
I.e., assume that the force of air resistance on a projectile is

$$
\vec{f}=-b \vec{v}
$$

Then the equation of motion for the projectile moving through air is
$m \dot{\vec{v}}=m \vec{g}-b \vec{v}$

Cartesian components

$\mathrm{x}=$ horizontal coordinate;
$\mathrm{y}=$ vertical coordinate (let positive be
upward)

$$
\begin{aligned}
& m \dot{v}_{x}=-b v_{x} \\
& m \dot{v}_{y}=-m g-b v_{y}
\end{aligned}
$$

The linear case is very nice, because the x and y coordinates separate; so we can solve their equations separately.

Recall from PHY 183, we do the same thing if we neglect air resistance:

$$
\begin{array}{lll}
\mathrm{x}^{\prime \prime}=0 & \text { so } & \mathrm{x}(\mathrm{t})=\mathrm{x}_{0}+\mathrm{v}_{0 \mathrm{x}} \mathrm{t} \\
\mathrm{y}^{\prime \prime}=-\mathrm{g} & \text { so } & \mathrm{y}(\mathrm{t})=\mathrm{y}_{0}+\mathrm{v}_{0 \mathrm{y}} \mathrm{t}-1 / 2 \mathrm{~g} \mathrm{t} \mathrm{t}^{2}
\end{array}
$$

But today we are introducing frictional force components; so the trajectory is not a parabola.

Special case:
Horizontal motion with linear drag
Figure 2.3

Figure 2.3 A cart moves on a horizontal frictionless track in a medium that produces a linear drag force.

$$
m \dot{v}_{x}=-b v_{x}
$$

The solution is obvious ("Separate and intyrate")

$$
v_{x}(t)=C e^{-b t / m}
$$

where C is a constant.
Determine C from the initial additions

$$
v_{x}(t)=v_{D x} e^{-b t / m}
$$

(or from some otter information.)

Figure 2.4

(a)

(b)

Figure 2.4 (a) The velocity v_{x} as a function of time, t, for a cart moving horizontally with a linear resistive force. As $t \rightarrow \infty, v_{x}$ approaches zero exponentially. (b) The position x as a function of t for the same cart. As $t \rightarrow \infty, x \rightarrow x_{\infty}=v_{x 0} \tau$.

$$
\begin{aligned}
d x & =v_{x} d t \text { ↔i.e., } d x^{\prime}=v_{x}\left(t^{\prime}\right) d t^{\prime} \\
\int_{x_{0}}^{x} d x^{\prime} & =\int_{0}^{t} v_{x}\left(t^{\prime}\right) d t^{\prime} \\
x-x_{0} & \left.=v_{0 x}\left(\frac{-m}{b}\right) e^{-b t^{\prime} / m}\right]_{t^{\prime}=0}^{t} \\
& =\frac{m v_{0 x}}{b}\left\{1-e^{-b t / m}\right\}
\end{aligned}
$$

Special case:

Vertical motion with linear drag
We want to solve this equation (*):

$$
m \dot{v}_{y}=+m g-b v_{y}
$$

The solution may be obtained in several ways ...

- trial and error; also called, guessing ;
- separation of variables (often used);
- particular + homogeneous;
the third method only works for linear equations; MTH 235

I'm following Taylor:
Let the y axis point downward;
so $\quad\left(\mathrm{F}_{\mathrm{y}}\right)_{\text {gravity }}=+\mathrm{mg}$.

FORCES

Solution of differential equations by separation of variables

Suppose we have an equation of this form,

$$
\begin{equation*}
\frac{d f}{d x}=K(f(x)) \tag{1}
\end{equation*}
$$

K is a function of f;
the unknown is $f(x)$.
Separate the variables x and f,

$$
\begin{equation*}
\frac{d f}{K(f)}=d x \quad \text { Fife., } \frac{d f^{\prime}}{K\left(f^{\prime}\right)}=d x^{\prime} \tag{2}
\end{equation*}
$$

Now integrate both sides of the equation,

$$
\int_{f_{0}}^{f} \frac{d f^{\prime}}{k\left(f^{\prime}\right)}=\int_{x_{0}}^{x} d x^{\prime}=x-x_{0}
$$

Eq.(3) gives x as a function of f.
But what we want is f as a function of x. So finally use algebra to solve (3) for f,
$f(x)=$ the solution of (3)

Go back to vertical motion with linear drag.
We want to solve this equation(*):

$$
m \frac{d v}{d t}=m g-b v
$$

Separate:

$$
\begin{aligned}
& m d v=(m g-b v) d t \\
& \frac{d v}{m g-b v}=\frac{d t}{m}
\end{aligned}
$$

Integrates

$$
\begin{aligned}
& \int_{v_{0}}^{v} \frac{d v^{\prime}}{m g-b v^{\prime}}=\int_{0}^{t} \frac{d t^{\prime}}{m} \\
& \text { CHS } \left.=\frac{-1}{b} \ln \left(m g-b v^{\prime}\right)\right]_{v^{\prime}=v_{0}}^{v}=\frac{1}{b} \ln \frac{m g-b v_{0}}{m g-b v} \\
& \text { RHS }=t / m
\end{aligned}
$$

Solve:

$$
\begin{gathered}
\frac{m g-b v_{0}}{m g-b v}=e^{b t / m} \\
m g-b v_{0}=(m g-b v) e^{b t / m} \\
b v-b v_{0} e^{-b t / m_{0}}=m g\left(1-e^{-b t / m)}\right. \\
v=\left(v_{0}-\frac{m g}{b}\right) e^{-b t / m}+\frac{m g}{b} \\
v(t)=\left(v_{0}-\frac{m g}{b}\right) e^{-b t / m}+\frac{m g}{b}
\end{gathered}
$$

Check Diff. Eq-; Check mitral) value; on $\frac{d v}{d t}+b v=-b\left(r_{0}-\frac{m q}{b}\right) e^{-b t / m}+b v=m g$

An object falling in Earth's gravity with a linear aerodynamic drag force, $f=-b \boldsymbol{v}$.

$$
v(t)=\left(v_{0}-\frac{m g}{b}\right) e^{-b t / m}+\frac{m y}{b}
$$

Figure $2.6\left(\right.$ assumes $\left.v_{0}=0\right)$

"Terminal velocity"
and "time constant"

$$
\begin{aligned}
& v_{\text {ter }}=\lim _{t \rightarrow \infty} v(t)=\frac{m g}{b} \\
& \tau=\frac{m}{b} \quad\left(e^{-b t / m}=e^{-t / \tau}\right)
\end{aligned}
$$

Also,
determine $y(t)$ by integrating $\nu_{y}(t)$.

Example 2.2

TERMINAL SPEED OF
 A SMALL DROP OF WATER

The terminal velocity of a drop of water (diameter = D) is the velocity at which

$$
\mathrm{F}=\mathrm{mg}-\mathrm{bv}-\mathrm{cv}^{2}=0 .
$$

The parameter values for air at STP are

$$
\begin{aligned}
b & =\left(1.6 \times 10^{-4} \mathrm{Ns} / \mathrm{m}^{2}\right) \mathrm{D} \\
\mathrm{c} & =\left(0.25 \mathrm{Ns}^{2} / \mathrm{m}^{4}\right) \mathrm{D}^{2} ;
\end{aligned}
$$

also, $\quad m=\left(0.52 \times 10^{6} \mathrm{~kg} / \mathrm{m}^{3}\right) \mathrm{D}^{3}$.
Calculate $v_{\text {terminal }}$ as a function of D.
Result
Small droplets (e.g., in a cloud) have small $\mathrm{v}_{\text {term. }}$; large droplets (e.g., raindrops) have larger $\mathrm{v}_{\text {term. }}$.

Homework Assignment \#3 due in class Wednesday, Sept. 22
[11] Problem 2.2
[12] Problem 2.3
[13] Problem 2.10
[14] Problem 2.18
[15] Problem 2.26
[16] Water drops
[17] Parametric Plot
Use the cover sheet.

