Chapter 2.
Projectiles; and Charged Particles

projectiles with air resistance

2.1. Air resistance

2.2. Linear air resistance
2.3. Trajectory and Range
2.4. Quadratic air resistance
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charged particle in a magnetic field
4 2.5. Charge in B field
d  2.6. Complex Exponentials
d 2.7.S5olveqinB

2.1 - Aerodynamic forces

When an object moves through air, it
experiences a force.

The force is exerted by the air on the
object; the reaction force is exerted by
the object on the air.

The force on the object can be
resolved into two components:

"drag" = component of force
in the direction of —v

"lift" = component of force
in the direction of —g




Air resistance

We will only consider the drag force;
denote it by f.

Figure 2.1
Motion of a projectile
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The force of air resistance fw)

[ The direction of fis parallel to
—V.

d  The magnitude of fdepends on v
(speed) and on other properties
of the object.

ad We'llwrite f= ftv) (-e)) ;

O and we'll write the magnitude as

fv)=bv+ c v? =fim+fquad




f=fv) (-e))
f(v)=bv+cv2:flm+fquad

fiin =b v comes from VISCoSity;

for a sphere,
b =D (D = diameter)
B=3nn (n = viscosity)

— 2
fquad = ¢ v° comes from
the inertia of air:

for a sphere,
c=0.25pA = yD?
Y <P (p = density )

Example 2.1 BASEBALLS AND LIQUID DROPS
Ll comparing the relative
Importance of fqua qandf, ;
consider 3 cases.

For a sphere moving through air at STP,

Dcun = ﬁDU' and ’5:/'5’(/0“{/\/;/&2
fond = YDV and = 025 Nsiw

in MKS units.

D v fquaw| /f, | dominant

[m/s]

1. baseball 7 cm 5 600 cv?
2..smaII 1mm 0.6 1 comparable
raindrop
3. tiny oil drop 5 -7
(Millikan expt) 1.5um | 5x10 10 bv




2.2 Linear air resistance

Now we'll specialize to ¢ = 0.
I.e., assume that the force of air
resistance on a projectile is

SN

Then the equation of motion for the
projectile moving through air is

1 > x

Cartesian components

X = horizontal coordinate;

y = vertical coordinate (let positive be
upward)

M vV, .= -—L Ue
m U < -
% my = by

The linear case is very nice, because the x
and y coordinates separate; so we can
solve their equations separately.

Recall from PHY 183, we do the same thing if we
neglect air resistance:

x"=0 SO

[ —

y =—8 SO

X(t) =x,+ v, t
Y() =y, + vy, t= Vg £

But today we are introducing frictional force
components, so the trajectory is not a parabola.




Special case:
Horizontal motion with linear drag

Figure 2.3

Figure 2.3 A cart moves on a horizontal frictionless track
in a medium that produces a linear drag force.
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Figure 2.4 (a) The velocity v, as a function of time, ¢, for a cart
moving horizontally with a linear resistive force. As t — oo, v,
approaches zero exponentially. (b) The position x as a function of
t for the same cart. As t — 00, X — X, = v, T.
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Special case:
Vertical motion with linear drag

We want to solve this equation (*):

7

The solution may be obtained in several
ways ...

/IMG“ = -l—'mg_-—’oU}

» trial and error; also called, guessing ;
» separation of variables (often used);

» particular + homogeneous;

the third method only works for linear
equations; MTH 235

['m following Taylor:

Let the y axis point downward,

SO (Fy)gravity = mg
FoRCES
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Solution of differential equations by
separation of variables

4 Suppose we have an equation of
this form,

df

——

4%

K is a function of f ;

NEY®)
(1)

the unknown is f(x) .

4 Separate the variables x and f,

e

A & lle. ifi
K{#)

) = da’
Ki£7)

(2)

3  Now integrate both sides of the

equation,
f 4 3 x

AL Ax’ = «-
fﬁ K(£?) f""’ x (0(5)

Eq.(3) gives x as a function of f.

d  Butwhat we want is f as a function
of x. So finally use algebra to solve
(3) for f,

f(x) = the solution of (3)
(4)

N |




Go back to vertical motion with

linear drag.
We want to solve this equation(*):
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An object falling in Earth's gravity
with a linear aerodynamic drag
force, f=-bv.

Uty = (-2 gt g

Figure 2.6 (assumes v, = 0)

AUy

Uter =" """ " omeess

"Terminal velocity"
and "time constant”

Ver = /&"" rlt) = _4%2_

T = ( him . T )

Also,
determine y(t) by integrating vy( t).



Example 2.2

TERMINAL SPEED OF
A SMALL DROP OF WATER

The terminal velocity of a drop of water
(diameter = D) is the velocity at which

F=mg-bv-cv=0.
The parameter values for air at STP are
b=(1.6x10"*Ns/m?)D
c =(0.25 Ns?/m*) D?;
also, m =(0.52 x 10° kg/m3) D3.

Calculate v as a function of D.

terminal

Result

Small droplets (e.g., in a cloud) have small v
large droplets (e.g., raindrops) have larger v

term. ’

term. *

Homework Assignment #3
due in class Wednesday, Sept. 22

[11] Problem 2.2
[12] Problem 2.3
[13] Problem 2.10
[14] Problem 2.18
[15] Problem 2.26
[16] Water drops
[17] Parametric Plot
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