Chapter 2.

Projectiles; and Charged Particles

projectiles with air resistance

- **2**.1. Air resistance
- 2.2. Linear air resistance
- □ 2.3. Trajectory and Range
- **Q** 2.4. Quadratic air resistance

charged particle in a magnetic field

- □ 2.5. Charge in B field
- **2.6.** Complex Exponentials
- **2**.7. Solve q in B

2.1 - Aerodynamic forces

When an object moves through air, it experiences a force.

The force is exerted by the air on the object; the reaction force is exerted by the object on the air.

The force on the object can be resolved into two components:

- "drag" = component of force in the direction of -v
- "*lift*" = component of force in the direction of –*g*

<u>Air resistance</u>

We will only consider the drag force; denote it by **f**.

<u>Figure 2.1</u> Motion of a projectile

The force of air resistance

- □ The direction of f is parallel to -v.
- The magnitude of *f* depends on v (speed) and on other properties of the object.
- \Box We'll write $f = f(v) (-e_v)$;
- □ and we'll write the magnitude as $f(v) = b v + c v^2 = f_{lin} + f_{quad}$

f(v)

$$f = f(v) (-e_v)$$
$$f(v) = b v + c v^2 = f_{\text{lin}} + f_{\text{quad}}$$

- $f_{\text{lin}} = b \text{ v comes from } \underline{viscosity};$ for a sphere, $b = \beta D$ (D = diameter) $\beta = 3\pi \eta$ ($\eta = \text{viscosity}$)
- $f_{quad} = c v^2$ comes from <u>the inertia of air;</u>

for a sphere, $c = 0.25 \rho A = \gamma D^2$ $\gamma \propto \rho$ (ρ = density) **Example 2.1 BASEBALLS AND LIQUID DROPS Solution Solution BASEBALLS AND LIQUID DROPS Solution S**

$$f_{lin} = \beta D U \quad and \quad \beta = 1.6 \times 10^{-4} Ns/m^2$$

$$f_{grad} = 3 D^2 U^2 \quad and \quad \gamma = 0.25 Ns^2/m^4$$

in MKS units.

	D	v [m/s]	f _{quad} / f _{lin}	dominant
1. baseball	7 cm	5	600	cv²
2. small raindrop	1 mm	0.6	1	comparable
3. tiny oil drop (Millikan expt)	1.5 μm	5x10 ⁵	10 ⁻⁷	bv

3

2.2 Linear air resistance

Now we'll specialize to c = 0. I.e., assume that the force of air resistance on a projectile is

7 = - 65

Then the equation of motion for the projectile moving through air is

<u>Cartesian components</u> x = horizontal coordinate; y = vertical coordinate (*let positive be upward*)

The linear case is very nice, because the x and y coordinates *separate*; so we can solve their equations separately.

Recall from PHY 183, we do the same thing if we <u>neglect</u> air resistance:

 $\begin{array}{ll} x'' = 0 & \text{so} & x(t) = x_0 + v_{0x} t \\ y'' = -g & \text{so} & y(t) = y_0 + v_{0y} t - \frac{1}{2} g t^2 \end{array}$

But today we are introducing frictional force components; so the trajectory is not a parabola.

<u>Special case:</u> <u>Horizontal motion with linear drag</u>

Figure 2.3 A cart moves on a horizontal frictionless track in a medium that produces a linear drag force.

$$\begin{split} \mathfrak{m} \ddot{v}_{\overline{x}} &= -b \, v_{\overline{x}} \\ & \text{The solution is obvious ("separate and integrate")} \\ & v_{\overline{x}}(t) &= C \, e^{-bt/m} \\ & \text{where } C \text{ is a constant.} \\ & \text{The ter usine } C \text{ from the initial conditions} \\ & v_{\overline{x}}(t) &= v_{\overline{x}} e^{-bt/m} \\ & (\text{or from Some other information.}) \end{split}$$

Figure 2.4 (a) The velocity v_x as a function of time, t, for a cart moving horizontally with a linear resistive force. As $t \to \infty$, v_x approaches zero exponentially. (b) The position x as a function of t for the same cart. As $t \to \infty$, $x \to x_{\infty} = v_{x0}\tau$.

$$dx = v_{x} dt \quad \leftarrow i.e., \quad dx' = v_{x}(t') dt'$$

$$\int_{x_{0}}^{x} dx' = \int_{0}^{t} v_{x}(t') dt'$$

$$x - x_{0} = v_{0x} \left(-\frac{m}{b}\right) e^{-bt'/m} \int_{t'=0}^{t}$$

$$= \frac{mv_{0x}}{b} \left\{1 - e^{-bt/m}\right\}$$

<u>Special case:</u> <u>Vertical motion with linear drag</u>

We want to solve this equation (*):

The solution may be obtained in several ways ...

- trial and error; also called, guessing;
- separation of variables (often used);
- particular + homogeneous;

the third method only works for linear equations; MTH 235

I'm following Taylor:

Let the y axis point *downward*;

so
$$(F_y)_{\text{gravity}} = + \text{ mg.}$$

Solution of differential equations by separation of variables

Suppose we have an equation of this form,

$$\frac{df}{dx} = K(f(x))$$

(1)

K is a function of f;

the unknown is f(x).

Separate the variables x and f,

= $dx \in i.e., \frac{df'}{k(f)} = dx'$ (2)

Now integrate both sides of the equation,

$$\int_{f_0}^{f} \frac{df'}{K(f')} = \int_{x_0}^{x} dx' = x - x_0$$
(3)

Eq.(3) gives x as a function of f.

But what we want is f as a function of x. So finally use algebra to solve (3) for f,

f(x) = the solution of (3)

(4)

Go back to vertical motion with linear drag.

We want to solve this equation(*):

$$m \frac{dv}{dt} = mg - bv$$

Separate:

$$m dv = (mg - bv) dt$$

$$\frac{dv}{mg - bv} = \frac{dt}{m}$$
Integrate:

$$\int_{v_{b}}^{v} \frac{dv'}{mg - bv'} = \int_{0}^{t} \frac{dt'}{m}$$

$$LHS = \frac{-1}{b} ln(mg - bv') \int_{v'=v_{b}}^{v} = \frac{1}{b} ln \frac{mg - bv}{mg - bv}$$

$$RHS = \frac{t}{m}$$

Solve; $\frac{mq-bv}{mq-bv} = e^{bt/m}$ mg-bro = (mg-br) ebt/m bu - bu ebt/m = mg (1-ebt/m) $V = \left(v_0 - \frac{mq}{L}\right) = bt/m + \frac{mq}{L}$ $U(t) = \left(v_o - \frac{mq}{h} \right) \overline{e}^{-bt/m} + \frac{mq}{l}$ Check DIA. Eq.; Check mitigl value; mdv + bv = -b(vo-mg)ebtim + bv = mg

An object falling in Earth's gravity with a linear aerodynamic drag force, f = -b v.

$$U(t) = \left(v_{o} - \frac{mq}{b}\right)e^{-bt/m} + \frac{mq}{b}$$

Figure 2.6 (assumes $v_0 = 0$)

"Terminal velocity" and "time constant"

 $\frac{v_{\text{fer}}}{t_{\text{res}}} = \lim_{t \to \infty} v(t) = \frac{mq}{h}$

 $T = \frac{m}{h}$ $(e^{-bt/m} = e^{-bt/m})$

Also,

determine y(t) by integrating $v_{y}(t)$.

Example 2.2

TERMINAL SPEED OF A SMALL DROP OF WATER

The terminal velocity of a drop of water (diameter = D) is the velocity at which

 $F = mg - bv - cv^2 = 0.$

The parameter values for air at STP are

b = ($1.6 \times 10^{-4} \text{ Ns/m}^2$) D c = ($0.25 \text{ Ns}^2/\text{m}^4$) D²;

also, $m = (0.52 \times 10^6 \text{ kg/m}^3) \text{ D}^3$.

Calculate $v_{terminal}$ as a function of D.

Result

Small droplets (e.g., in a cloud) have small $v_{term.}$; large droplets (e.g., raindrops) have larger $v_{term.}$.

Homework Assignment #3 due in class Wednesday, Sept. 22

[11] Problem 2.2
[12] Problem 2.3
[13] Problem 2.10
[14] Problem 2.18
[15] Problem 2.26
[16] Water drops
[17] Parametric Plot

Use the cover sheet.