Section 2.3 Trajectory and range of a projectile in a linear medium

Recall the basic equations for projectile motion with linear air resistance.

Let $\mathrm{x}=$ the horizontal coordinate; let $y=$ the vertical coordinate, with the positive direction upward;

Solutions for v_{x} and v_{y} as functions of $t \ldots$

$$
\begin{aligned}
& m \dot{v}_{x}=-b v_{x} \Rightarrow v_{x}(t)=v_{0 x} e^{-b t / m} \\
& m \dot{v}_{y}=-m g-b v_{y} \\
& \Rightarrow v_{y}(t)=\left(v_{0 y}+\frac{m g}{b}\right) e^{-b t / m}-\frac{m g}{b}
\end{aligned}
$$

Rewrite the solutions ...

$$
\begin{aligned}
v_{x}(t) & =v_{0 x} e^{-t / \tau} \quad \text { where } \tau=\frac{m}{b} \\
v_{y}(t) & =\left(v_{0 y}+v_{\text {ter }}\right) e^{-t / \tau}-v_{\text {ter }} \\
\text { where } & v_{\text {ter }}=\frac{m g}{b}=\tau g
\end{aligned}
$$

"time constant" = τ and
"terminal speed" $=\mathrm{v}_{\text {ter }}$

Calculation of the trajectory
The "trajectory" is the curve in space along which the particle moves.
-Horizontal position, $\mathrm{x}(\mathrm{t})$

$$
\begin{aligned}
& v_{x}(t)=v_{0 x} e^{-t / \tau} \\
& \begin{aligned}
x(t) & =\int_{0}^{t} v_{x}\left(t^{\prime}\right) d t^{\prime} \\
& \left.=v_{0 x}(-\tau) e^{-t^{\prime} \tau}\right]_{t^{\prime}=0}^{t} \\
& =v_{0 x} \tau\left(1-e^{-t / \tau}\right)
\end{aligned}
\end{aligned}
$$

Note: $\mathrm{x}(\mathrm{t})$ approaches a maximum distance, $\mathrm{x}_{\text {max }}=\mathrm{v}_{0 \mathrm{x}} \tau$ as t increases.

Vertical position, $\mathrm{y}(\mathrm{t})$; take $\mathrm{y}(0)=0$

$$
\begin{aligned}
v_{y}(t) & =\left(v_{0 y}+v_{\text {ter }}\right) e^{-t / \tau}-v_{\text {ter }} \\
y(t) & \left.=\int_{0}^{t} v_{y}(t)\right) d t^{\prime} \\
& \left.=\left(v_{0 y}+v_{\text {ter }}\right)(-\tau) e^{-t / c}\right]_{0}^{t}-v_{\text {ter }} t \\
& =\left(v_{v_{y}}+v_{\text {ter }}\right) \tau\left[1-e^{-t / \tau}\right]-v_{\text {ter }} t
\end{aligned}
$$

Note: $\mathrm{v}_{\mathrm{y}}(\mathrm{t})$ approaches a maximum speed the terminal speed $-\quad \mathrm{v}_{\text {ter }}=\mathrm{mg} / \mathrm{b}$

- Trajectory, ie., the curve in space along which the projectile moves; solve for y as a function of x;

$$
y=\left(v_{0 y}+v_{\text {ter }}\right) \frac{x}{v_{o x}}+v_{\text {ter }} \tau \ln \left(1-\frac{x}{v_{0 x \tau}}\right)
$$

Figure 2.7

The trajectory of a projectile, assuming linear air resistance

Figure 2.7 The trajectory of a projectile subject to a linear drag force (solid curve) and the corresponding trajectory in a vacuum (dashed curve). At first the two curves are very similar, but as t

Horizontal range ; R and $\mathrm{R}_{\mathrm{vac}}$

Recall, without air resistance,

$$
R_{\text {vac }}=\frac{2 v_{0 x} v_{0 y}}{g}
$$

With linear air resistance,
$y=0$ where $x=R$
$\therefore\left(v_{0 y}+v_{\text {ter }}\right) \frac{R}{v_{0 x}}+v_{\text {ter }} c \ln \left(1-\frac{R}{v_{0 x} \tau}\right)=0$
But this is a transcendental equation for the range R (as a function of $v_{0 x}, v_{0 y}$ and τ).

Methods to compute:
[i] use a computer, or
[ii] make an approximation.

Example 2.4

THE RANGE OF A SMALL METAL PELLET

(note: "small" means tiny).
Suppose $\mathrm{D}=0.2 \mathrm{~mm}$ and $\left\{\mathrm{v}_{0 \mathrm{x}}, \mathrm{v}_{0 \mathrm{y}}\right\}$ $=\{1 / \sqrt{ } 2,1 / \sqrt{ } 2\} \mathrm{m} / \mathrm{s}$. Calculate the range.

To solve:
$y=0$ where $x=R$
$\therefore\left(v_{0 y}+v_{\text {ter }}\right) \frac{R}{v_{0 x}}+v_{\text {ter }} c \ln \left(1-\frac{R}{v_{0 x} \tau}\right)=0$
Recall, $\mathrm{v}_{\text {ter }}=\mathrm{mg} / \mathrm{b}$ and $\tau=\mathrm{m} / \mathrm{b}=\mathrm{v}_{\text {ter }} / \mathrm{g}$.
We'll calculate m from the density ρ,

$$
\mathrm{m}=(\pi / 6) \rho \mathrm{D}^{3} ;
$$

also, recall for air $b=\left(1.6 \times 10^{-4} \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2}\right) \mathrm{D}$.

- If there is no air resistance then the range is

$$
\mathrm{R}_{\mathrm{vac}}=2 \mathrm{v}_{0 \mathrm{x}} \mathrm{v}_{\mathrm{oy}} / \mathrm{g}=10.2 \mathrm{~cm}
$$

- Assuming linear air resistance, and solving the equation exactly (I used Mathematica)

material	$\left.\begin{array}{c}\text { density } \\ (\mathrm{kg} \mathrm{m}\end{array} \mathrm{m}^{-3}\right)$	$\mathrm{v}_{\text {ter }}$ $(\mathrm{m} / \mathrm{s})$	R (cm)
gold	16×10^{3}	20.5	9.74
aluminum	2.7×10^{3}	3.47	7.96

Program: $\{\rho, D\} \rightarrow m$ $\{\mathrm{m}, \mathrm{b}\} \rightarrow \tau \quad$ and $\quad\{\tau, \mathrm{g}\} \rightarrow \mathrm{v}_{\text {term. }}$. $\left\{\mathrm{v}_{0 \mathrm{x}}, \mathrm{v}_{\mathrm{oy}}, \mathrm{v}_{\text {term. }}, \tau\right\} \rightarrow \mathrm{R}$ (numerically)

- Taylor's approximate method ...
$y=0$ where $x=R$
$\therefore\left(v_{0 y}+v_{\text {ter }}\right) \frac{R}{v_{0 x}}+v_{\text {ter }} c \ln \left(1-\frac{R}{v_{0 x} \tau}\right)=0$

We might anticipate that $\mathrm{R} /\left(\mathrm{v}_{0 \mathrm{x}} \tau\right)$ is small ; these tiny pellets will have a small range.
Let $\varepsilon=\mathrm{R} /\left(\mathrm{v}_{\mathrm{ex}} \tau\right)$ AND ANTICIPATE $\varepsilon \ll 1$.
Recall the Taylor series for $\ln (1-\varepsilon)$

$$
=-\varepsilon-\varepsilon^{2} / 2-\varepsilon^{3} / 3+O\left(\varepsilon^{4}\right) ;
$$

so approximate

$$
\ln (1-\varepsilon) \approx-\varepsilon-\varepsilon^{2} / 2-\varepsilon^{3} / 3
$$

Then after a bit of algebra (exercise: check this)

$$
\begin{equation*}
\mathrm{R} \approx \mathrm{R}_{\mathrm{vac}}\left\{1-\frac{\left.4 \mathrm{v}_{0 \mathrm{y}}\right\}}{3 \mathrm{v}_{\mathrm{ter}}}\right. \tag{eq.2.44}
\end{equation*}
$$

where $\mathrm{R}_{\mathrm{vac}}=\mathrm{v}_{0}{ }^{2} / \mathrm{g}$.
Results of the approximation:
gold

$$
\begin{aligned}
& \mathrm{R} \approx 9.73 \mathrm{~cm} \\
& {[\text { exact }=9.74 \Rightarrow \text { error }=-0.1 \%]}
\end{aligned}
$$

aluminum $\quad \mathrm{R} \approx 7.42 \mathrm{~cm}$

$$
\text { [exact }=7.96 \Rightarrow \text { error }=-7.3 \% \text {] }
$$

Range versus initial speed for a projectile with linear air resistance
Assume these parameters:
initial angle of elevation = 45 degrees; terminal speed $=40 \mathrm{~m} / \mathrm{s}$.

Black curve = exact, calculated with Mathematica;
Red curve = Taylor's approximation;
Blue dashed curve = result with no air resistance (range $=\mathrm{R}_{\mathrm{vac}}=\mathrm{v}_{0}{ }^{2} / \mathrm{g}$)

A plotting technique:

PARAMETRIC PLOTS

Suppose we know $x(t)$ and $y(t)$;
and now we want to make a plot of y versus x ("the trajectory").

```
ParametricPlot[ {x[t],y[t]},
    {t,0,5},
    PlotRange->{{0,15},{0,6}} ]
```

For example, with $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$, $v_{0}=\{10,10\} \mathrm{m} / \mathrm{s}$, and $\tau=3 \mathrm{~s}$:


```
x[t_]:=v0x*T*(1 - Exp[-t/T])
y[t_]:=(v0y+vter)*T*(1 - Exp[-t/r])
    - vter*t
```

Homework Assignment \#3
due in class Friday, September 22
[11] Problem 2.2 *
[12] Problem 2.3 *
[13] Problem 2.10 **
[14] Problem 2.18 *
[15] Problem 2.26 *
[16] Water drops
[17] Parametric plot
Use the cover sheet.

