Section 2.4

Quadratic Air Resistance

Read Section 2.4.

Now we'll assume that the air resistance force is proportional to the square of the speed; i.e., the linear resistance is negligible compared to the quadratic resistance.

Equations

- $\boldsymbol{f}=-\mathrm{c} \mathrm{v}^{2} \boldsymbol{e}_{v}$
- For a spherical object, with diameter D,

$$
\mathrm{c}=\gamma \mathrm{D}^{2} \quad, \quad \gamma=0.25 \mathrm{Ns}^{2} \mathrm{~m}^{-4}
$$

Horizontal motion with quadratic air resistance; e.g., a bicycle coasting on a level road;

Solve by separation of variables $m d v=-c v^{2} d t$

$$
\frac{d v}{v^{2}}=-\frac{c}{m} d t \quad \leftarrow \text { [.r., } \frac{d v^{\prime}}{v^{\prime 2}}=-\frac{c}{m} d t^{\prime}
$$

$$
\operatorname{lntg} r_{a}+=
$$

$$
\begin{aligned}
& \int_{v_{0}}^{v} \frac{d v^{\prime}}{v^{\prime 2}}=-\frac{c}{m} \int_{0}^{t} d t^{\prime} \\
& \quad L=-\frac{1}{v^{\prime}} \int_{v_{0}}^{v}=\frac{-1}{v}+\frac{1}{v_{0}}=-\frac{c}{m} t
\end{aligned}
$$

Solve for $v:$

$$
\frac{1}{v}=\frac{1}{v_{0}}+\frac{c t}{m} \quad \text { or } \quad v(t)=\frac{m v_{0}}{m+c v_{0} t}
$$

Figure 2.8.

Result

The position $x(t)$
$\tau_{\text {time constant for }}$ quadratic resistance

$$
\begin{aligned}
& \text { The position } \frac{x(t)}{\int_{x_{0}}^{x} d x^{\prime}=\int_{0}^{t} \widetilde{v_{x}^{\prime}\left(t^{\prime}\right)} d t^{\prime}} \frac{v_{0}}{1+t^{t / \tau}} \\
& \begin{aligned}
x-x_{0} & \left.=v_{0} \tau \ln \left(1+t^{\prime} / \tau\right)\right]_{t^{\prime}=0}^{t} \\
& =v_{0} \tau \ln (1+t / \tau)
\end{aligned}
\end{aligned}
$$

Vertical motion with quadratic air resistance; e.g., an object dropped from rest falls straight down; $\left(\mathrm{v}_{0}=0\right)$;

It is convenient to let the y axis point downward, so $\mathrm{F}_{\mathrm{g}}=+\mathrm{mg}$.

Before we solve the equation, what is the terminal velocity?
At terminal velocity, $\mathrm{F}_{\text {net }}=0$.
Thus $v_{t e r}=\sqrt{\mathrm{mg} / \mathrm{c}}$.

Separation of variables:
$m d v=\left(m g-c v^{2}\right) d t$

$$
\frac{d v^{\prime}}{m g-c v^{\prime 2}}=\frac{d t^{\prime}}{m}
$$

Integration: $\int_{v_{0}}^{v} \frac{d v^{\prime}}{\ln g-c v^{\prime 2}}=\frac{1}{c} \int_{v_{0}}^{v} \frac{d v^{\prime}}{v_{t-m}^{2}-v^{\prime 2}}$
$=\left.\frac{1}{c v_{\text {term }}} \cdot \operatorname{arctanh}\left(\frac{v^{\prime}}{v_{\text {Fem }}}\right)\right|_{v_{i}} ^{v}$
$=\frac{1}{c v_{\text {tex }}} \operatorname{arctanh}\left(\frac{v}{v v_{\text {tam. }}}\right)$ for $v_{0}=0$
$=\int_{0}^{t} \frac{d t^{\prime}}{m}=t / m$

Solve for $v(t)$:

$$
\operatorname{arctanh}\left(\frac{v}{v_{\text {tern }}}\right)=\frac{c v_{\text {tenn. }} t}{m}=\frac{g t}{U_{\text {fen }}}
$$

$$
v(t)=l_{\text {ter. }} \tanh \left(\frac{g t}{v_{\text {fer. }}}\right)
$$

$$
v(t)=v_{\text {ter }} \tanh \left(\frac{g t}{v_{\text {ter }}}\right)
$$

Example 2.5
a baseball dropped from a high tower
(See Figures 2.9 (a) and (b) .)

Dashed : no air resistance
Black : quadratic air resistance

```
Mathematica commands
Recall, c= \gamma D
{mass, diam} = {0.15, 0.07} (* kg and m *)
{g, gamma} = {9.8,0.25} (* mks units *)
```

vterm $=$ Sqrt [mass*g/(gamma*diam^2)]
vy[t_] := vterm*Tanh[g*t/vterm]
$y\left[t _\right]:=$vterm^2/g*Log[Cosh [g*t/vterm]]
p1 $=\operatorname{Plot}\left[\left\{g^{*} t, \operatorname{vy}[t]\right\},\{t, 0,8\}\right]$
$p 2=\operatorname{Plot}\left[\left\{1 / 2 \star g^{*} t^{\wedge} 2, y[t]\right\},\{t, 0,8\}\right]$

Quadratic drag for a projectile with both x (horizontal) and y (vertical) motion

Example. A baseball home run, calculated using Mathematica.

> Assume these initial conditions: speed $=40 \mathrm{~m} / \mathrm{s}(\sim 90 \mathrm{mi} / \mathrm{h})$
> angle $=45 \mathrm{degrees}$
> height $=1 \mathrm{~m}$

Mathematica Program

```
g = 9.8; vter = 35; m = 0.15; const = m*g/vter^2;
v0 = 40; ang0=Pi/4;
eqs = {
    m*x''[t] == - const*x'[t]*Sqrt[x'[t]^2 + y'[t]^2],
    m*y''[t] == -m*g - const*y'[t]*Sqrt[x'[t]^2 + y'[t]^2],
\(\square\)
```

 \(x[0]==0, x '[0]==v 0 * C o s[a n g 0]\),
 \(y[0]==1, y '[0]==v 0 * S i n[a n g 0] \quad\} ;\)
 $\mathrm{Q}=\mathrm{NDSolve[eqs},\{x[\mathrm{t}], \mathrm{y}[\mathrm{t}]\},\{\mathrm{t}, \mathrm{0}, 6\}]$;
ParametricPlot[\{x[t] /. Q[[1]], y[t] /. Q[[1]]\}, \{t, 0, 6\}]


```
Test yourself:
A bicycle rider coasts down a hill.
The angle of the slope is 0=10 degrees =
0.174 radians. (A) Using your knowledge
about air resistance, estimate the
terminal speed of the bicycle, in meters
per second. (B) Determine the speed as a
function of time, starting from speed vo at
t = 0.
Data:
```

```
Mass = 70 kg ;
```

Mass = 70 kg ;
effective area = 1 m}\mp@subsup{}{}{2}

```
effective area = 1 m}\mp@subsup{}{}{2}
```


Homework Assignment \#3

due date = Wednesday Sept. 20
[11] Problem 2.2 *
[12] Problem 2.3^{*}
[13] Problem 2.10 **
[14] Problem 2.18 *
[15] Problem 2.26 *
[16] Water drops
[17] Parametric Plot

Use the cover sheet.

