Section 2.5.
Motion of a Charged Particle in a Magnetic Field
The magnetic force on a charged particle is the Lorentz force,

$$
\begin{equation*}
\mathbf{F}=q \boldsymbol{v} \times \mathbf{B} . \tag{1}
\end{equation*}
$$

Here \mathbf{B} is the magnetic field. (PHY 184)
In general, $\mathbf{B}=\mathbf{B}(\mathbf{r}, \mathrm{t})$;
in Eq. (1) \mathbf{B} means the field at the position of the charged particle.

We'll keep it simple, and assume that B is uniform in space and constant in time.

Figure 2.12

Charge q moves with velocity v in a magnetic field \mathbf{B}.
Calculate the trajectory.
The goal is to solve this equation of motion,

$$
m \frac{d \mathbf{v}}{d t}=q \mathbf{v} \times \mathbf{B}
$$

Cartesian coordinates

Assume B is uniform and constant.
Set up a coordinates system such that the z axis is in the direction of B.

The equations of motion

$$
\begin{aligned}
& m \frac{d \mathbf{v}}{d t}=q \mathbf{v} \times \mathbf{B} \\
& \mathrm{mv}=\mathrm{m}\left\{\mathrm{v}_{\mathrm{x}}, \mathrm{v}_{\mathrm{y}}, \mathrm{v}_{\mathrm{z}}\right\} \\
& \mathrm{m} \dot{\boldsymbol{v}}=\mathrm{m}\left\{\dot{\mathrm{v}}_{\mathrm{x}}, \stackrel{\bullet}{\mathrm{v}}_{\mathrm{y}}, \stackrel{\bullet}{\mathrm{~V}}_{\mathrm{z}}\right\} \\
& \text { (dot means d/dt) } \\
& q \mathbf{v} \times \mathbf{B}=\begin{array}{l}
\quad q\left|\begin{array}{ccc}
\hat{e}_{x} & \hat{e}_{y} & \hat{e}_{z} \\
v_{x} & v_{y} & v_{z} \\
0 & 0 & B
\end{array}\right| \\
=q\left\{\begin{array}{ccc}
\hat{e}_{x} & \left.v_{y} B-\hat{e}_{y} v_{x} B\right\}
\end{array}\right.
\end{array} \\
& q \mathbf{v} \times \mathbf{B}=q\left\{\mathrm{v}_{\mathrm{y}} B,-\mathrm{v}_{\mathrm{x}} B, 0\right\}
\end{aligned}
$$

Solutions
The z component

$$
\begin{aligned}
& m \dot{v}_{z}=0 \\
& v_{z}=v_{0 x}, \text { constant } \\
& z(t)=z_{0}+v_{\Delta x} t
\end{aligned}
$$

The transverse components

$$
\begin{aligned}
& m \dot{v}_{x}=q B v_{y} \\
& m i_{y}=-q B v_{x}
\end{aligned}
$$

The cyclotron frequency
$i_{i x}=\frac{q B}{m} v_{y}=\omega v_{y}$
where $\omega=g \mathrm{~B} / \mathrm{m}$
$\ddot{v}_{x}=\omega \dot{v}_{y}=-\omega^{2} v_{x}$
$v_{x}=c_{1} \cos \omega t+c_{2} \sin \omega t$
$v_{y}=\frac{1}{\omega} \dot{v}_{x}=-c_{1} \sin \omega t+c_{2} \cos \omega t$
$\therefore i z$ sweeps ont a circle
of radius $\sqrt{c_{1}^{3}+c_{2}^{2}}$.

EXERCISE: $|\mathbf{v}|$ is constant.

Results

$$
\begin{aligned}
v_{z} & =\text { constant; } z_{E} v_{D Z} t \\
v_{x} & =c_{1} \cos \omega t+c_{2} \sin \omega t \\
& \Rightarrow x=\frac{c_{1}}{\omega} \sin \omega t-\frac{c_{2}}{\omega} \cos \omega t \\
v_{y} & =-c_{1} \sin \omega t+c_{2} \cos \omega t \\
& \Rightarrow y=\frac{c_{1}}{\omega} \cos \omega t+\frac{c_{2}}{\omega} \sin \omega t
\end{aligned}
$$

Assume $v_{x}(0)=0$; then $c_{1}=0$.

$$
\vec{v}(t)=c_{2}\left\{\hat{e}_{x} \sin \omega t+\hat{e}_{y} \cos \omega t\right\}
$$

The speed is constant;

$$
\sqrt{v_{k}^{2}+v_{k}^{2}}=c_{2}
$$

The trajectory is a circe; radius $=c_{2} / \omega$;
direction $=$ CLOCKWISE

$$
\vec{r}(t)=x(t) \hat{e}_{y}+y(t) \hat{e}_{y}
$$

The period is $2 \pi / \omega$.
The frequency is $\omega /(2 \pi)$. ω is called the angular frequency.

It is interesting to analyze the problem using complex numbers.

Define

$$
\eta=\mathrm{v}_{\mathrm{x}}+i \mathrm{v}_{\mathrm{y}}
$$

$$
i=\sqrt{ }(-1)
$$

That is,

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{x}}=\operatorname{Re} \eta \\
& \mathrm{v}_{\mathrm{y}}=\operatorname{Im} \eta
\end{aligned}
$$

Figure 2.13:
The plane of complex numbers

Now write the equations of motion (transverse components) in terms of η.

Solve the equations of motion using the complex variable

$$
\begin{aligned}
\eta & =v_{x}+i v_{y} \\
\dot{\eta} & =\dot{v}_{x}+i \dot{v}_{y} \\
& =\omega v_{y}+i(-\omega) v_{x} \\
& =-i \omega\left(v_{x}+i v_{y}\right)=-i \omega \eta \\
\dot{\eta} & =-i \omega \eta
\end{aligned}
$$

The exponential function

$$
\frac{d f}{d x}=\alpha f(x) \Rightarrow f(x)=A e^{\alpha x}
$$

because then

$$
\frac{d f}{d x}=A \alpha e^{\alpha x}=\alpha f(x)
$$

So $\eta(t)$ is an exponential function

$$
\eta(t)=A e^{-i \omega t} \quad \text { complex! }
$$

In the next section [Section 2.6] we'll review some important properties of complex numbers and the complex exponential function -- widely useful in theoretical physics.

Aside Some related problems:
A charge q moving in both magnetic and electric fields,

$$
\mathbf{F}=\mathrm{q}(\mathbf{E}+\boldsymbol{v} \times \mathbf{B})
$$

- If \mathbf{E} and \mathbf{B} are parallel : Taylor Problem 2.53 (easy)
- If \mathbf{E} and \mathbf{B} are perpendicular :

- If $\boldsymbol{v}=\mathbf{E} \times \mathbf{B} / \mathbf{B}^{2}$ then the charge moves through the fields with constant velocity.

Proof

$$
\begin{aligned}
& \vec{F}=q \vec{E}+q \vec{v} \times \vec{B} \\
& =q \vec{E}+q\left(\frac{\vec{E} \times \vec{B})}{B^{2}} \times \vec{B}\right. \\
& \text { - }(\vec{A} \times \vec{B}) \times \vec{C}=\vec{B}(\vec{A} \vec{c})-\vec{A}(\vec{B} \cdot \vec{c}) \\
& =q \vec{E}+\frac{q}{B^{2}}[\underbrace{\vec{B}(\vec{E} \vec{B})}_{\left(\mathcal{S}_{\text {fiell }}\right)}-\underbrace{\vec{E}(\vec{B} \cdot \vec{B})}_{B^{2}}]=0 \\
& \text { Newton's finst law }
\end{aligned}
$$

- In the most general case, the charge has a "drift velocity" ExB $/ \mathrm{B}^{2}$; PHY 481 ; in general the trajectory is a cycloid curve.

Homework Assignment \#4 due in class Wednesday, September 27
[17] Problem 2.23 *
[18] Problem 2.31 **
[19] Problem 2.41 **
[20] Problem 2.53 *
[21] Problem 2.43 *** [computer]
[22] Graph $f_{n}(x)$.
Use the cover sheet.

