Section 2.6

Complex Exponentials

Read Section 2.6.

Today's subject isn't classical mechanics.
It's useful mathematics that can be applied in many fields.

So we are going off on a tangent today, to learn about the subject of ...

Complex Exponentials

The exponential function, $\exp (\mathrm{x})$

What is this function?
I.e., how is it defined?

I'm sure that you know

$$
\exp (\mathrm{x})=\mathrm{e}^{\mathrm{x}}
$$

where e is a certain number.
But what is e?
e is an irrational number, approximately equal to 2.718 .

But what is the exact value of e ? And what is so special about 2.718...?

The exponential function, $\exp (\mathrm{x})$

What is this function?

The definition of $\exp (\mathrm{x})$ is that

$$
\exp ^{\prime}(\mathrm{x})=\exp (\mathrm{x})
$$

with $\exp (0)=1$.

We'll express $\exp (\mathrm{x})$ as a power series.

But first we need ...

Taylor's theorem

If $f(\mathrm{x})$ is continuous and differentiable then

$$
\begin{aligned}
f(\mathrm{x}+ & \delta) \\
& =f(\mathrm{x})+f^{\prime}(\mathrm{x}) \delta \\
& +f^{\prime \prime}(\mathrm{x}) \delta^{2} / 2+f^{\prime \prime \prime}(\mathrm{x}) \delta^{3} / 6 \\
& +\ldots+f^{(n)}(\mathrm{x}) \delta^{\mathrm{n}} / \mathrm{n}!+\ldots
\end{aligned}
$$

Proof
Compare LHS and RHS as functions of δ

$$
\text { -set } \delta=0 \text { : } f(\mathrm{x})=f(\mathrm{x})
$$

check
-differentiate w.r.t. δ and set $\delta=0$:

$$
f^{\prime}(\mathrm{x})=f^{\prime}(\mathrm{x})
$$

check
-twice differentiate " and set $\delta=0$:

$$
f^{\prime \prime}(\mathrm{x})=f^{\prime \prime}(\mathrm{x})
$$

check

- n times differentiate " and set $\delta=0$:

$$
f^{(n)}(\mathrm{x})=f^{(n)}(\mathrm{x})
$$

The power series for $\exp (u)$

Apply Taylor's theorem, with $\mathrm{x}=0$ and $\delta=\mathrm{u}$.
$\exp (\mathrm{u})=\exp (0)+\exp ^{\prime}(0) \mathrm{u}$
$+\exp ^{\prime \prime}(0) \mathrm{u}^{2} / 2$
$+\exp ^{\prime \prime}(0) \mathrm{u}^{3} / 6$
$+\ldots+\exp ^{(n)}(0) u^{n} / n!+\ldots$
\therefore by the definition of $\exp (\mathrm{x})$

$$
\begin{aligned}
\exp (\mathrm{u})=1 & +\mathrm{u}+\mathrm{u}^{2} / 2+\mathrm{u}^{3} / 6 \\
& +\ldots+\mathrm{u}^{\mathrm{n}} / \mathrm{n}!+\ldots
\end{aligned}
$$

Result

$$
\exp (x)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

red dashes :
truncation of the series at $\mathrm{n}=4$

Theorem $\quad \exp (\mathrm{x}) \exp (\mathrm{y})=\exp (\mathrm{x}+\mathrm{y})$
Proof
(This is Taylor's Problem 2.51.)

$$
\begin{aligned}
& \exp (x+y)=\sum_{p=0}^{\infty}(x+y)^{p} / p! \\
& =\sum_{p=0}^{\infty} \sum_{n=0}^{p} x^{n} y^{p-n}\binom{p}{n} \frac{1}{p!} \\
& =\sum_{p=0}^{\infty} \sum_{n=0}^{p} \sum_{m=0}^{p} \delta_{k}(m, p-x) x^{n} y^{m} \frac{p!}{n!m!} \frac{1}{p!} \\
& =\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{x^{n} y^{m}}{n!m!} \quad\left(\sum_{p}=1\right) \\
& =\exp (x) \exp (y)
\end{aligned}
$$

Corollary $\quad \exp (\mathrm{x})=\mathrm{e}^{\mathrm{x}}$ where e is a certain number.

Proof:

$$
e^{x} e^{y}=e^{x+y}
$$

\boldsymbol{e}, the base of natural logarithms
e may be expressed in terms of the integers, using $\mathrm{e}=\exp (1)=\mathrm{e}^{1}=\mathrm{e}$:

By the power series,
$\mathrm{e}=1 / 0!+1 / 1!+1 / 2!+1 / 3!+1 / 4!+\ldots$
$\mathrm{e} \approx 1+1+0.5+0.1667+0.0416+\ldots$
$\mathrm{e} \approx 2.718$
$\mathrm{e}=2.7182818284590450908 \ldots$
e is the sum of reciprocal factorials.

Now consider

where θ is a real number.
It's defined by the power series, so

$$
\mathrm{e}^{\mathrm{i} \theta}=\sum_{n=0}^{\infty} \frac{(i \theta)^{n}}{n!}
$$

The terms with n odd are imaginary, and the terms with n even are real,

$$
\begin{aligned}
\mathrm{i}^{\theta} & =1 & & \mathrm{n} \mid 4 \quad \text { (divisible by } 4) \\
\mathrm{i}^{1} & =\mathrm{i} & & (\mathrm{n}-1) \mid 4 \\
\mathrm{i}^{2} & =-1 & & (\mathrm{n}-2) \mid 4 \\
\mathrm{i}^{3} & =-\mathrm{i} & & (\mathrm{n}-3) \mid 4 \\
\mathrm{i}^{4} & =1 & & \mathrm{n} \mid 4
\end{aligned}
$$

So,

$$
\begin{aligned}
e^{i \theta} & =\sum_{n \text { even }} \frac{(-1)^{n / 2}}{n!} \theta^{n}+i \sum_{\text {node }} G \\
R e & =1-\frac{1}{2} \theta^{2}+\frac{1}{24} \theta^{4}+\ldots \\
& =\cos \theta \\
\operatorname{Im} & =\theta-\frac{1}{6} \theta^{3}+\frac{1}{120} \theta^{5}+\ldots \\
& =\sin \theta
\end{aligned}
$$

Euler's formula

$$
\mathrm{e}^{i \theta}=\cos (\theta)+i \sin (\theta)
$$

Magnitude and Phase
 of a complex number, z

Let z denote a complex number.
We can write $\mathrm{z}=\mathrm{x}+\mathrm{i} \mathrm{y}$;

$$
\mathrm{x}=\operatorname{Re} \mathrm{z} \quad \text { and } \quad \mathrm{y}=\operatorname{Im} \mathrm{z} .
$$

The magnitude of z is r defined by

$$
\mathrm{z}^{*} \mathrm{z}=r^{2}=(\mathrm{x}-\mathrm{iy})(\mathrm{x}+\mathrm{iy})=\mathrm{x}^{2}+\mathrm{y}^{2} ;
$$

the phase of z is φ, defined by

$$
\begin{aligned}
& \mathrm{x}=r \cos \varphi, \\
& \mathrm{y}=r \sin \varphi ;
\end{aligned}
$$

or, $\quad \tan \varphi=\mathrm{y} / \mathrm{x}$.

By Euler's formula,

$$
\mathrm{z}=r \mathrm{e}^{i \varphi}
$$

This is a crucial trick when we use complex numbers in theoretical physics.

We can write $z=x+i y$; or we can write $z=r e i \varphi$.

We just use whichever representation is more convenient.

In the next lecture we'll use the complex exponential function to calculate the motion of a charged particle in a magnetic field.

Homework Assignment \#4 due in class Wednesday 9/27
[17] Problem 2.23 *
[18] Problem $2.31^{* *}$
[19] Problem 2.41 **
[20] Problem 2.53 *
[21] Problem $2.43^{* * *}$ [computer]
[22] Graph of $\mathrm{f}_{\mathrm{n}}(\mathrm{x})$ Use the cover sheet.

