Section 2.6 Complex Exponentials

Read Section 2.6.

Today's subject isn't classical mechanics.

It's useful mathematics that can be applied in many fields.

So we are going off on a tangent today, to learn about the subject of ...

Complex Exponentials

The exponential function, *exp*(x)

What is this function? I.e., how is it defined?

I'm sure that you know

 $exp(x) = e^x$

where e is a certain number.

But what is e?

e is an irrational number, approximately equal to 2.718.

But what is the *exact* value of e? And what is so special about 2.718...?

The exponential function, *exp*(x)

What is this function?

The definition of exp(x) is that exp'(x) = exp(x),

with exp(0) = 1.

We'll express *exp*(x) as a power series.

But first we need ...

Taylor's theorem

If $f(\mathbf{x})$ is continuous and differentiable then

$$\begin{split} f(\mathbf{x}{+}\delta) &= f(\mathbf{x}) + f'(\mathbf{x}) \,\delta \\ &+ f''(\mathbf{x}) \,\delta^2/2 + f'''(\mathbf{x}) \,\delta^3 \,/6 \\ &+ \ldots + \,f^{(n)}(\mathbf{x}) \,\delta^n \,/n! + \ldots \end{split}$$

ProofCompare LHS and RHS as functions of δ •set $\delta = 0$: $f(\mathbf{x}) = f(\mathbf{x})$ check•differentiate $w.r.t. \delta$ and set $\delta = 0$: $f'(\mathbf{x}) = f'(\mathbf{x})$ check•twice differentiate " and set $\delta = 0$: $f''(\mathbf{x}) = f''(\mathbf{x})$ check•n times differentiate " and set $\delta = 0$: $f^{(n)}(\mathbf{x}) = f^{(n)}(\mathbf{x})$ check

O.E.D

truncation of the series at n=4

exp(x) exp(y) = exp(x+y)Theorem Proof (This is Taylor's Problem 2.51.) $e_{xp}(x+y) = \sum_{b=0}^{\infty} (x+y)^{b} / b!$ binomial theuren $S_{\mathcal{K}}(m, p-n) \times \gamma^{m}$ $\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{x^n y^m}{n!m!}$ (Z=1) emp(x) exp(y) <u>Corollary</u> $exp(x) = e^{x}$ where e is a certain number. $e^{X}e^{Y} = e^{X+Y}$ Proof:

 $oldsymbol{e}$, the base of natural logarithms

e may be expressed in terms of the integers, using $e = exp(1) = e^1 = e$: By the power series, e = 1 / 0! + 1 / 1! + 1 / 2! + 1 / 3! + 1 / 4! + ... $e \approx 1 + 1 + 0.5 + 0.1667 + 0.0416 + ...$ $e \approx 2.718$

e = 2.7182818284590450908 ...

e is the sum of reciprocal factorials.

Now consider

$e^{i\theta}$

where θ is a real number.

It's defined by the power series, so

The terms with n odd are imaginary, and the terms with n even are real,

$i^{0} = 1$	n 4 (divisible by 4)
$i^1 = i$	(n-1) 4
$i^2 = -1$	(n-2) 4
$i^3 = -i$	(n-3) 4
$i^4 = 1$	n 4

So, $e^{i\theta} = \sum_{m \in Ven} \frac{(-1)^{m/2}}{m!} \theta^m + i \sum_{m \in M} \frac{(-1)^m}{m!}$ $Re = 1 - \frac{1}{2}\theta^2 + \frac{1}{24}\theta^4 + \dots$ = Cos O $I_m = \theta - \frac{1}{6}\theta^3 + \frac{1}{120}\theta^5 + \dots$ = SMD

Euler's formula $e^{i\theta} = \cos(\theta) + i\sin(\theta)$ Magnitude and Phase
of a complex number, zLet z denote a complex number.We can write z = x + i y;
x = Re z and y = Im z.The magnitude of z is r defined by

 $z^*z = r^2 = (x-iy) (x+iy) = x^2 + y^2;$

the *phase* of z is φ , defined by

 $x = r \cos \varphi ,$ $y = r \sin \varphi ;$

or,
$$\tan \varphi = y/x$$
.

By Euler's formula,

 $z = r e^{i\varphi}$

This is a crucial trick when we use complex numbers in theoretical physics.

> We can write z = x + iy; or we can write $z = re^{i\varphi}$.

We just use whichever representation is more convenient.

In the next lecture we'll use the complex exponential function to calculate the motion of a charged particle in a magnetic field.

Homework Assignment #4 due in class Wednesday 9/27 [17] Problem 2.23 * [18] Problem 2.31 ** [19] Problem 2.41 ** [20] Problem 2.53 * [21] Problem 2.43 *** [computer] [22] Graph of $f_n(x)$ Use the cover sheet.