Section 2.7

Solution for a charge q in a magnetic field \boldsymbol{B}.

Read Section 2.7.

Recall Monday's lecture

Define a complex variable η by

$$
\eta=\mathrm{v}_{\mathrm{x}}+i \mathrm{v}_{\mathrm{y}}
$$

Now note that

$$
\eta^{\prime}=-i \omega \eta \quad \text { (verify it!) }
$$

The general solution of the equation of motion is $\eta(\mathrm{t})=\mathrm{A}^{-i \omega \mathrm{t}}$.
We must allow for A to be complex;
write $\quad \mathrm{A}=a \mathrm{e}^{i \delta}$.
Then

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{x}}=\operatorname{Re} \eta=a \cos (\omega \mathrm{t}-\delta) \\
& \mathrm{v}_{\mathrm{y}}=\operatorname{Im} \eta=-a \sin (\omega \mathrm{t}-\delta)
\end{aligned}
$$

Figure 2.14: The transverse velocity components

(a) Illustrates Euler's equation : $\mathrm{e}^{\mathrm{i} \theta}=\cos \theta+\mathrm{i} \sin \theta$
(b) $\eta=\mathrm{A} \exp (-i \omega \mathrm{t})$ and $\quad \mathrm{A}=a \exp (i \delta) ; \quad \eta(t)$ rotates clockwise

The trajectory; coordinates vs time
The transverse motion of a positive charge q in magnetic field $B=B \boldsymbol{e}_{z} \ldots$

$$
\begin{aligned}
x+i y= & \left(x_{0}+i y_{0}\right)(\cos \omega t-i \sin \omega t) \\
= & x_{0} \cos \omega t+y_{0} \sin \omega t \\
& +i\left(y_{0} \cos \omega t-x_{0} \sin \omega t\right)
\end{aligned}
$$

Figure 2.15

$$
\begin{aligned}
& x(t)=x_{0} \cos \omega t+y_{0} \sin \omega t \\
& y(t)=y_{0} \cos \omega t-x_{0} \sin \omega t \\
& x^{2}+y^{2}=x_{0}^{2}+y_{0}^{2}
\end{aligned}
$$

The trajectory is a circle
traversed
clockwise (for q
>0).

In 3 dimensions, the general

 trajectory is a cylindrical helix.Consider $\mathrm{y}_{0}=0$.
Then

$$
\begin{aligned}
& \mathrm{z}(\mathrm{t})=\mathrm{v}_{0 \mathrm{z}} \mathrm{t} \\
& \mathrm{x}(\mathrm{t})=\mathrm{x}_{0} \cos (\omega \mathrm{t}) \\
& \mathrm{y}(\mathrm{t})=-\mathrm{x}_{0} \sin (\omega \mathrm{t})
\end{aligned}
$$

Radius $\mathrm{R}=\mathrm{x}_{0}$
Period T $=2 \pi / \omega$
where $\omega=q B / m$
Direction = clockwise in xy plane for positive q.

Test your understanding of magnetism: Verify the direction from $F=q \vee \times B$!

IN CLASS WORK :
2 PROBLEMS

Homework Assignment \#4 due in class Wednesday Sept. 27
[17] Problem 2.23 *
[18] Problem $2.31^{* *}$
[19] Problem $2.41^{* *}$
[20] Problem 2.53 *
[21] Problem $2.43^{* * *}$ [computer]
[22] Graph of $\mathrm{f}_{\mathrm{n}}(\mathrm{x})$.
Use the cover sheet!

Wednesday Quiz
Assume: The electric field points in the x direction, and the magnetic field points in the y direction.

Assume: A positive charge is located at the origin, and is moving in the z direction.
What is the direction of the acceleration? There are two possibilities which you should identify.

$$
\begin{aligned}
& \mathbf{F}=\mathrm{qE}_{0} \mathbf{e}_{\mathrm{x}}-\mathrm{qvB}_{0} \mathbf{e}_{\mathrm{x}} \\
& \mathbf{F}=\mathrm{q}\left(\mathrm{E}_{0}-\mathrm{vB}_{0}\right) \mathbf{e}_{\mathrm{x}} \\
& \text { - if } \mathrm{v}<\mathrm{E}_{0} / \mathrm{B}_{0} \text { then } \mathbf{a} \sim \mathbf{e}_{\mathrm{x}} \\
& \text { - if } \mathrm{v}>\mathrm{E}_{0} / \mathrm{B}_{0} \text { then } \mathbf{a} \sim-\mathbf{e}_{\mathrm{x}}
\end{aligned}
$$

