Chapter 3: Momentum and Angular Momentum

- □ 3.1 Conservation of Momentum
- □ 3.2 Rockets
- □ 3.3 The center of mass
- 3.4 Angular momentum for a single particle
- 3.5 Angular momentum for several particles

Read Chapter 3 during the next two weeks.

Homework Assignment #5 due in class Wednesday, October 4

[21] Problem 3.4 **
[22] Problem 3.5 **
[23] Problem 3.6 *
[24] Problem 3.10 *
[25] Problem 3.12 **
[26] Problem 3.13 **

Use the cover sheet!

Section 3.1 Conservation of Momentum

First, define momentum for a single particle,

 $\mathbf{p} = \mathbf{m} \mathbf{v}$.

Now consider a system containing N particles. For each particle there is momentum,

$$\mathbf{p}_{\alpha} = \mathbf{m}_{\alpha} \mathbf{v}_{\alpha}$$
.
($\alpha = 1 \ 2 \ 3 \dots N$)

The total momentum of the system is **P**

$$\mathbf{P} = \mathbf{p}_1 + \mathbf{p}_2 + \mathbf{p}_3 + \dots + \mathbf{p}_N$$
.

$$\mathbf{P} = \sum_{\alpha=1}^{N} \mathbf{p}_{\alpha} = \sum_{\alpha=1}^{N} m_{\alpha} \mathbf{v}_{\alpha}$$

 This is the crucial result:
 <u>Theorem</u>. P = F^{ext} where F^{ext} is the sum of all external forces acting on the particles.

(dot over a letter means d/dt)

Proof

= <u>Z</u> P., = Z w, J. All the internal forces cancel in pairs Newton's third law; or Fas =0

<u>The principle of conservation of</u> <u>momentum</u>

For an *isolated system* of N particles, the total momentum is a constant of the motion.

<u>Proof</u>: Because it is an isolated system, there are no external forces.

Thus the previous theorem states that

 $d\mathbf{P}/dt = 0.$

Hence **P** is constant in time.

Example 3.1

A perfectly inelastic collision

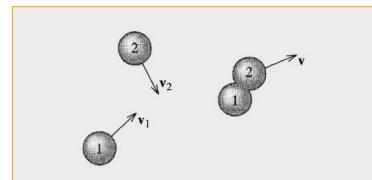


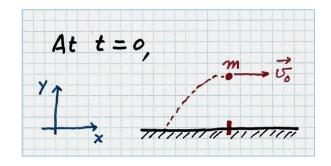
Figure 3.1 A perfectly inelastic collision between two lumps of putty.

The problem is to calculate **v**.

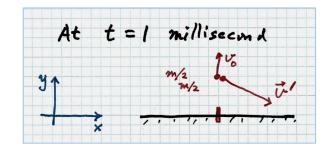
Principle: The total momentum is conserved. Before the collision. $P = m_1 v_1 + m_2 v_2$. After the collision (stuck together) $P = (m_1 + m_2) v$. The momentum is conserved (constant) so $(m_1 + m_2) v = m_1 v_1 + m_2 v_2$: $\mathbf{v} = (m_1 v_1 + m_2 v_2) / (m_1 + m_2)$ Special cases: If $m_1 >> m_2$ then $v \approx v_1$; if $m_1 \ll m_2$ then $\mathbf{v} \approx \mathbf{v}_2$; If $m_1 = m_2$ then $v = \frac{1}{2}(v_1 + v_2)$.

Another example:

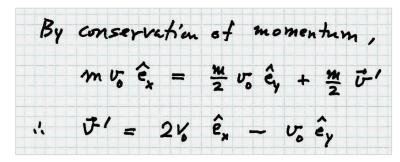
an exploding projectile (Taylor, Problem 3.2)



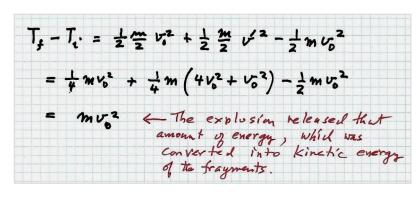
Ar t = 1 ms, the shell explodes into 2 equal mass fragments, and one fragment goes straight up with speed v_0



Calculate the velocity of the second fragment.



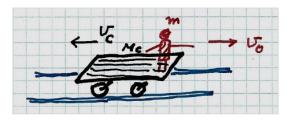
How much energy was released in the explosion?



5

Another example:

a hobo jumps off a railroad flat car (Taylor, Problem 3.4)



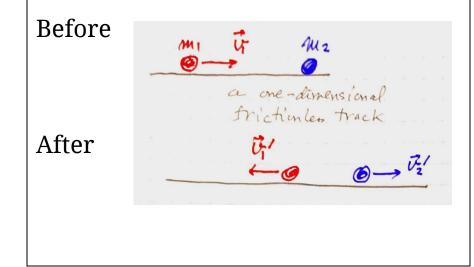
Assuming the car is initially at rest, calculate the increase of kinetic energy.

Principle: Momentum is conserved.

	= - 1	н <i>и</i> Ме	+ M _c v		
=	ション	2 + ±M	+ 1 M.	$(M_c)^2$	
-	ション	² [/+	<u>m</u> _]	€ { [≈] ¹ / ₂ m mv ₀ ²	vo ² if m< <m if m=M</m

Comment. In impulsive collisions, momentum is conserved because during the short time of the collision, external forces are negligible.

<u>A head-on *elastic collision* in 1</u> <u>dimension with one particle at rest</u>



 $M_1 U_1 = M_1 U_1' + M_2 U_2'$ $\frac{1}{2} m_1 v_1^2 = \frac{1}{2} m_1 v_1^2 + \frac{1}{2} m_2 v_2^2$ (elastic) Algebra to solve the quations => $U_1^{\prime} = \frac{m_1 - m_2}{m_1 + m_2} U_1^{\prime}$ and $U_2^{\prime} = \frac{2m_1}{m_1 + m_2} U_1^{\prime}$

Special Cuses $M_1 = M_2 \implies V_1' = 0, V_2' = V_1'$ · M1 > M2 => m1 continues forward · MI < M2 => MI bounces back

Conservation of momentum and Newton's third law

- Is momentum always conserved?
- We've already seen that *kinetic energy* is not always conserved.

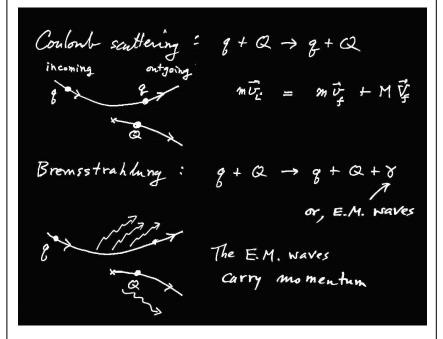
Chapter 4 will introduce potential energy. But *mechanical energy* (T+U) is not always conserved.

THERMODYNAMICS is necessary to understand that *total energy* is always conserved; the first law of thermodynamics.

• Is momentum always conserved?

Particle momentum is not always conserved because there is field momentum. But *total momentum* is conserved.

• <u>Example</u>



For PHY 321: *In Newtonian mechanics, particle momentum is always conserved.* Homework Assignment #5 due in class Wednesday, October 4 [21] Problem 3.4 ** [22] Problem 3.5 ** [23] Problem 3.6 * [24] Problem 3.10 * [25] Problem 3.12 ** [26] Problem 3.13 **

Use the cover sheet.