Section 3. Rockets

Read Section 3.2.

The rocket contains a fuel that burns rapidly. As the exhaust gas is expelled from the combustion chamber, there is a reaction force on the rocket. "THRUST"

Figure 3.2 A rocket of mass m travels to the right with speed v and ejects spent fuel with exhaust speed $v_{\text {ex }}$ relative to the rocket.

Now we'll analyze the motion, using the principle of momentum; i.e.,

$$
\dot{\mathbf{P}}=\mathbf{F}^{\mathrm{ext}}
$$

eq. (3.1)

But be careful to identify \mathbf{P} correctly!
(Dot • means d/dt)

Figure 3.2 A rocket of mass m travels to the right with speed v and ejects spent fuel with exhaust speed $v_{\text {ex }}$ relative to the rocket.

Derive the equation of motion for the rocket.

What I mean by the "rocket" is the metal cylinder plus the fuel inside.

The mass of the rocket decreases as fuel is expelled out the back.

Let
$m(t)=$ the mass of the rocket at time t;

$$
\mathrm{m}(\mathrm{t})=\mathrm{M}_{\mathrm{cyl}}+\mathrm{M}_{\text {fuel inside }}(\mathrm{t})
$$

The equation of motion will depend on two parameters of the rocket engine:

- $\boldsymbol{v}_{\boldsymbol{e x}}=$ the relative speed of the exhaust gas.
The velocity of the exhaust gas at time t is $v(t)-v_{\text {ex }}$, where $v(t)$ is the velocity of the rocket.
- $\boldsymbol{K}=$ the mass rate of the exhaust; K is positive.

$$
\mathrm{K}=-\mathrm{dM}_{\mathrm{F}} / \mathrm{dt}=-\mathrm{dm} / \mathrm{dt}
$$

I.e., $K \delta t=$ the mass of fuel expelled by the engine during the time ot
$=$ the decrease of the rocket mass during $\delta \mathrm{t}$. (units of $\mathrm{K}=\mathrm{kg} / \mathrm{s}$)

Derivation

Consider the change of momentum of the total system = rocket and fuel, from time t to time $t+\delta t$.

The total momentum at time t is

$$
P(t)=m(t) v(t)+P_{\text {fuel already expelled before } t}
$$

(I'm only considering one-dimensional motion of the rocket.)

The total momentum at time $t+\delta t$ is

$$
\mathbf{P}(\mathrm{t}+\delta \mathrm{t})=\mathrm{m}(\mathrm{t}+\delta \mathrm{t}) \mathrm{v}(\mathrm{t}+\delta \mathrm{t})
$$

\leftarrow rocket at t+dt
$+(\mathrm{K} \delta \mathrm{t})\left[\mathrm{v}(\mathrm{t})-\mathrm{v}_{\mathrm{ex}}\right] \quad \leftarrow$ fuel expelled during dt
$+\mathrm{P}_{\text {fuel already expelled before } t}$

Subtle point here: because δt is small (in fact, take the limit $\delta t \rightarrow 0$) we can neglect the change of v during the time δt when we calculate the velocity of the exhaust.

The change of total momentum =

$$
\delta \mathrm{P}=\mathrm{P}(\mathrm{t}+\delta \mathrm{t})-\mathrm{P}(\mathrm{t}) .
$$

The equation of motion is Eq. 3.1,

$$
\mathrm{dP} / \mathrm{dt}=\delta \mathrm{P} / \delta \mathrm{t}=\mathrm{F}_{\mathrm{ext}}
$$

Now calculate ...

$$
\begin{aligned}
\delta \mathrm{P}= & (\mathrm{m}(\mathrm{t})-\mathrm{K} \delta \mathrm{t})(\mathrm{v}(\mathrm{t})+\delta \mathrm{v}) \\
& +\mathrm{K} \delta \mathrm{t}\left(\mathrm{v}(\mathrm{t})-\mathrm{v}_{\mathrm{ex}}\right)+\mathrm{P}_{\text {expelled before } \mathrm{t}}-\mathrm{P}(\mathrm{t}) \\
= & \mathrm{K} \delta \mathrm{t}\left(-\mathrm{v}_{\mathrm{ex}}\right)+\mathrm{m}(\mathrm{t}) \delta \mathrm{v}+\mathrm{O}\left(\delta^{2}\right) \\
& \left(\cdot \text { note the cancellations!; • neglect order } \delta^{2}\right)
\end{aligned}
$$

Result: $m(d v / d t)-K v_{e x}=F_{\text {ext }}$

The rocket equations

For a rocket moving in one dimension, the velocity $\mathrm{v}(\mathrm{t})$ obeys

$$
\begin{equation*}
m \frac{d v}{d t}=K v_{e x}+F_{e x t} \tag{1}
\end{equation*}
$$

where $v_{\text {ex }}=$ the relative speed of the exhaust and $\mathrm{K}=$ the mass rate of the exhaust. Here $m(t)$ is the mass of the rocket including enclosed fuel, SO

$$
\begin{equation*}
\frac{\mathrm{dm}}{\mathrm{dt}}=-\mathrm{K} \tag{2}
\end{equation*}
$$

$$
\text { Thrust force }=\mathrm{K}_{\mathrm{ex}} \text {. }
$$

Example. A rocket in deep space with constant values of $\mathrm{v}_{\text {ex }}$ and $\mathrm{K} \ldots$
Let the initial velocity be v_{0} and the initial mass be m_{0}.
Calculate the velocity at time t .

$$
\begin{aligned}
& \text { By } E_{q} \cdot(2), \quad m(t)=m_{0}-K t \\
& \text { Then } E_{q} \cdot(1) \text { it } \\
& \qquad\left(m_{0}-K t\right) \frac{d v}{d t}=K v_{0 x} \\
& \text { - Separation of variables: } \\
& \qquad d v=K v_{c x} \frac{d t}{m_{0}-K t} \\
& \text { - Integration of both silos of } t t \text { of: } \\
& \left.v-v_{0}=K v_{x}\left(\frac{1}{K}\right) \ln \left(m_{0}-K^{\prime} t\right)\right]_{t^{\prime}=t}^{t^{\prime}=t} \\
& =
\end{aligned}
$$

$$
v=v_{0}+v_{e x} \ln \left[m_{0} /\left(m_{0}-K t\right)\right]
$$

Example \#2. A rocket in deep space with constant v_{ex} and arbitrary time dependence of $K(t)$.

Let the initial velocity be v_{0} and the initial mass be m_{0}.
Calculate the velocity at time t.
Result:

$$
\mathrm{v}(\mathrm{t})=\mathrm{v}_{0}+\mathrm{v}_{\mathrm{ex}} \ln \left[\mathrm{~m}_{0} / \mathrm{m}(\mathrm{t})\right]
$$

PROOF

$$
\begin{aligned}
& \text { Calculate } d v / d t \\
& \quad=-v_{e x} \frac{1}{m} \frac{d m}{d t}
\end{aligned}
$$

$$
\text { Thus } m \frac{d v}{d t}=k v_{\text {ex }}
$$

$$
\text { which is correct because } F_{\text {ext }}=0
$$ in deep space.

GRAPH OF VELOCITY VS TIME

$$
\begin{aligned}
& \mathcal{F}_{\text {ext }}=0 \Rightarrow \\
& \delta v=v_{\text {exhaust }} \ln \left(m_{0} / m\right)
\end{aligned}
$$

TAKE OFF FROM EARTH'S SURFACE

Here we have

$$
\mathrm{m}(\mathrm{dv} / \mathrm{dt})=\mathrm{K}_{\mathrm{ex}}-\mathrm{mg}
$$

Assume
$\mathrm{g}=$ constant and $\mathrm{v}_{\mathrm{ex}}=$ constant.
Now solve the DIFF. EQ.

$$
\begin{aligned}
m d v & =K v_{\text {ex }} d t-m g d t \\
& =-v_{\text {ex }} d m-m g d t \\
d v & =-v_{\text {ex }}(d m / m)-g d t
\end{aligned}
$$

Integrate
can't integrate! don't know m(t).

$$
\begin{aligned}
\int_{0}^{\mathrm{v}} \mathrm{dv} & =-\mathrm{v}_{\mathrm{ex}} \int_{\mathrm{m} 0}{ }^{\mathrm{m}} \mathrm{dm}^{\prime} / \mathrm{m}^{\prime}-\mathrm{g} \int_{0}^{\mathrm{t}} \mathrm{dt}^{\prime} \\
\mathrm{v}(\mathrm{t}) & =\mathrm{v}_{\mathrm{ex}} \ln \left[\mathrm{~m}_{0} / \mathrm{m}(\mathrm{t})\right]-\mathrm{g} \mathrm{t} .
\end{aligned}
$$

Also, $\mathrm{m}(\mathrm{t})=\mathrm{m}_{0}-\mathrm{Kt} \quad$ (assuming K is constant)

Graph of v as a function of t

(1) initial slope $=\left(v_{e x} K-m_{0} g\right) / m_{0}$
(2) rocket runs out of fuel
(3) final slope $=-g$
(4) rocket starts to fall downward
(5) Max. height = area under the curve

A more difficult example:
Fire a rocket to the stars
Now g is not constant. As r increases, g decreases;

$$
g(r)=g_{s} R_{E}^{2} / r^{2}
$$

for $r>R_{E}$.

The equation of motion is

$$
m \frac{d v}{d t}=K v_{e x}-m g_{s} \frac{R_{E}^{2}}{r^{2}}
$$

Example: Saturn V rocket
1st stage: burn time $=165 \mathrm{sec}$; fuel $=2,003,000 \mathrm{~kg}$; thrust $=35,000 \mathrm{kN}$
end stage: burn time $=360 \mathrm{sec}$; fuel $=456,000 \mathrm{~kg}$; thrust $=5,000 \mathrm{kN}$

3rd stage: burn time $=500 \mathrm{sec}$; fuel $=110,000 \mathrm{~kg}$; thrust $=1,000 \mathrm{kN}$

QUIZ

Suppose a rocket takes off from Earth's surface. Parameters
burn time $=165 \mathrm{sec}$;
$m 0=2,500,000 \mathrm{~kg} ;$ fuel $=2,000,000 \mathrm{~kg}$:
thrust $=35,000 \mathrm{kN}$.
Calculate the velocity at the burn-out time.
Hint: Three steps:
$K=$
v_exhaust =
—
v_final =

