Homework Assignment #5 due in class Wednesday, October 4

[21] Problem 3.4 **
[22] Problem 3.5 **
[23] Problem 3.6 *
[24] Problem 3.10 *
[25] Problem 3.12 **
[26] Problem 3.13 **

Use the cover sheet.

The first hour exam will be in class Friday (October 6).

Do the homework <u>now</u> so that you will have some time to study for the exam.

Study: -basic equations; -lecture notes; -in-class work; -homework.

www.pa.msu.edu/courses/phy321/

Section 3.3 The Center of Mass
FIRST: The center of mass of a system of N particles
The system consists of N particles: masses = m_{α} position vectors = r_{α} ($\alpha = 1 \ 2 \ 3 \dots N$) The total mass, M, is $M = \sum_{\alpha=1}^{N} m_{\alpha}$.

 $\Box \quad \text{The center of mass position, } R, \\ \text{is} \quad N$

I.e., *R* = the "average position", weighted by the masses

These two theorems shows why **R** is important.

<u>Theorem 1</u>

 $\mathbf{M} \mathbf{R} = \mathbf{P} \qquad (= total momentum)$

<u>Theorem 2</u>

 $\mathbf{M} \mathbf{R} = \mathbf{F}^{\text{ext}} \quad (= sum \ of \ external \ forces)$

In words:

The center of mass position moves under the influence of the external forces,

independent of internal forces.

Proofs.

```
are easy ...
M\vec{R} = (m_1 + m_2) \frac{d}{dt} \frac{u_1\vec{r}_1 + m_2}{m_1 + m_2}
        = m_1 \vec{r}_1 + m_2 \vec{r}_3
         = \vec{p}_1 + \vec{p}_2 = \vec{P}
and
   M\vec{R} = \vec{P} = \vec{F}_{ext}
```

<u>SECOND :</u> **R** for a solid body

• Imagine the object divided into an infinite number of infinitesimal parts.

 Recall the definition of an *integral* in calculus.

 $\lim_{N \to \infty} \sum_{i=1}^{N} f(x_i) \delta x_i = \int_{a}^{b} f(x) dx$

• For example, consider the *total mass*

$$M = \sum_{\alpha=1}^{N} (\delta m_{\alpha})$$

Now take the limit $N \rightarrow \infty$ and $\delta m \rightarrow 0$ to get the continuum limit,

$$M = \int_{Body} dm = \int_{V} \rho(\mathbf{r}) d^{3}r$$

- <u>Center of Mass position</u>
 - $R = (1/M) \sum_{\alpha=1}^{N} r_{\alpha} (\delta m_{\alpha})$

Now take the limit $N \to \infty$ and $\delta m \to 0$ to get the continuum,

$$\mathbf{R} = (1/M) \int_{Body} \mathbf{r} dm$$
$$= \int_{V} \mathbf{r} \rho(\mathbf{r}) d^{3}r / M .$$

I.e., **R** is the mean position weighted by the mass density.

Example

an exploding projectile

Case A. If the projectile does not explode, then the trajectory is a parabola (*ignoring air resistance*) .

Case B. If the projectile explodes into fragments, then *the center of mass point* follows the same parabola as case A.

$$\mathbf{M} \mathbf{R''} = \mathbf{F}^{\mathbf{ext}} = \sum_{i} \mathbf{m}_{i} \mathbf{g} = \mathbf{M} \mathbf{g}$$

Example.

The center of mass of two particles lies on the line joining the two particles.

<u>Figure 3.3</u>

Figure 3.3 The CM of two particles lies at the position $\mathbf{R} = (m_1\mathbf{r}_1 + m_2\mathbf{r}_2)/M$. You can prove that this lies on the line joining m_1 to m_2 , as shown, and that the distances of the CM from m_1 and m_2 are in the ratio m_2/m_1 .

Example 3.2 - - - CoM of a solid cone

Figure 3.4 A solid cone, centered on the z axis, with vertex at the origin and uniform mass density ρ . Its height is *h* and its base has radius *R*.