## Section 3.4.

## Angular Momentum for a Single Particle

## The definition

Consider a particle with position vector $\boldsymbol{r}$ (w.r.t. the chosen origin 0 ) and momentum $\boldsymbol{p}=\mathrm{m} \boldsymbol{v}$.


Define the angular momentum, of the particle about the origin 0 ;

- notation $=\boldsymbol{\ell}$;
- $\boldsymbol{l}=\boldsymbol{r} \times \boldsymbol{p}$
- $\boldsymbol{\ell}$ is a vector.
(Review cross product;
page 7 and the right hand rule)
- The direction is perpendicular to the plane spanned by $\boldsymbol{r}$ and p.
- The magnitude is $\mathrm{rp} \sin \theta$.



## Theorem.

## $\mathrm{d} \boldsymbol{\ell} / \mathrm{dt}$ is equal to the torque.

## Proof.

$$
\begin{aligned}
\frac{d l}{d t} & =\frac{d}{d t}(\vec{r} \times \vec{p}) \text { where } \vec{p}=m \vec{v} \\
& =m[\underbrace{\frac{d \vec{r}}{d t} \times \vec{v}}_{v}+\vec{r} \times 0 \underbrace{\frac{d \vec{v}}{d t}}] \\
& =\vec{r} \times \vec{F}=\text { torque }
\end{aligned}
$$



Figure 3.5 For any particle with position $\mathbf{r}$ relative to the origin $O$ and momentum $\mathbf{p}$, the angular momentum about $O$ is defined as the vector $\ell=\mathbf{r} \times \mathbf{p}$. For the case shown, $\ell$ points into the page.


Figure 3.6 A planet (mass $m$ ) is subject to the central force of the sun (mass $M$ ). If we choose the origin at the sun, then $\mathbf{r} \times \mathbf{F}=0$, and the planet's angular momentum about $O$ is constant.

## Example

## Kepler's second law

## Figure 3.7



Figure 3.7 The orbit of a planet with the sun fixed at $O$. Kepler's second law asserts that if the two pairs of points $P, Q$ and $P^{\prime}, Q^{\prime}$ are separated by equal time intervals, $d t=d t^{\prime}$, then the two areas $d A$ and $d A^{\prime}$ are equal.

Johannes Kepler published three laws of planetary orbits, in 1609 and 1619.

He determined these laws from a mathematical analysis of planetary observations -- very difficult in the 17th century ; Kepler was a mathematical genius.

Kepler's second law:
The radial vector sweeps out equal areas in equal times.

We'll prove that this follows from conservation of angular momentum.

Angular momentum was not known at the time of Kepler; it was Newton who discovered that any radial force implies the law of equal areas.

## Comment:

"Kepler's second law" or, conservation of angular momentum applies to all central forces.
I.e., it's not just for planetary orbits.


Figure 3.6 A planet (mass $m$ ) is subject to the central force of the sun (mass $M$ ). If we choose the origin at the sun, then $\mathbf{r} \times \mathbf{F}=0$, and the planet's angular momentum about $O$ is constant.

## TAYLOR PROBLEM 3.25.



The mass $m$ slides without friction on a horizontal surface. It is attached to a string as shown. The string goes through a hole in the surface, $O$; and it can be pulled down beneath the surface to change the distance $r$ from $m$ to $O$.
A. Initially, r = $\mathrm{r}_{0}$ and $\omega=\omega_{0}$.
Calculate $F_{0}$ required to keep r constant.
B. Then the string is pulled down by distance $\mathrm{r}_{0} / 2$. Determine the final angular velocity.
C. Calculate the work done pulling the string.
(A)

$$
F_{0}=m r_{0} w_{0}^{2}
$$

(B) Ang. momentum is constant, so
$\ell=m r^{2} \omega$
$=m r_{0}{ }^{2} \omega_{0}$
$\therefore \omega_{\text {final }}=4 \omega_{0}$
(C)

$$
W=\int F d y
$$

should be $\Delta K$

Example
Calculate the angular momentum of a rotating disk, that rotates around the symmetry axis of the disk.


$$
\begin{aligned}
& \vec{L}=\sum_{\delta m} \vec{r} \times \delta_{m} \vec{v} \quad \text { when } \begin{array}{r}
\vec{r}=r \hat{e}_{r} \\
\vec{v}=r \omega \hat{e}_{\phi}
\end{array} \\
& \quad\left[v=\frac{2 \pi r}{T}=\omega r\right] \\
& \vec{L}=\int d m r^{2} \omega \hat{e}_{z} \\
& \vec{L}=I \omega \hat{e}_{z} \text { where } I=\int \operatorname{dm} r^{2}
\end{aligned}
$$

$$
\begin{aligned}
I_{\text {DISK }} & =\frac{M}{\pi R^{2}} \int_{0}^{R} r d r \int_{0}^{2 \pi} d \phi r^{2} \\
& =\frac{M}{\pi R^{2}} \frac{R^{4}}{4} 2 \pi=\frac{1}{2} M R^{2}
\end{aligned}
$$

Moment of Inertia


THE PARALLEL AXIS THEOREM - an example

$$
\begin{aligned}
I_{C M} & =\int r_{1}^{2} d m=\int\left(x^{2}+y^{2}\right) d m \\
& =\frac{1}{2} M R^{2}
\end{aligned}
$$


$P=$ parallel axis at distance $d$

$$
I_{P}=I_{C M}+M d^{2}
$$

$$
\begin{aligned}
& I_{p}=\int\left(x^{\prime 2}+y^{\prime 2}\right) d m \\
&= \int\left[(d-x)^{2}+y^{2}\right] d m \\
&= \int\left[d^{2}-2 x d+x^{2}+y^{2}\right] d m \\
&= M d^{2}+I_{C M} \text { because }\langle x\rangle=0 \\
& \quad \int x \text { dm }^{2}=0
\end{aligned}
$$

Kepler's Second Law ...
First, the orbit lies in a plane because the vector $\boldsymbol{\ell}$ is a constant of the motion.


Use plane polar coordinates ( $\mathrm{r}, \varphi$ ). The area swept out by the radial vector from time $t$ to $t+\delta t$ is

$$
\begin{aligned}
& \delta A=\frac{1}{2} r r \delta \phi \\
& \frac{\delta A}{\delta t}=\frac{1}{2} r^{2} \frac{\delta \phi}{\delta t}
\end{aligned}
$$

The angular momentum is

$$
\begin{aligned}
& \vec{l}= \vec{r} \times m \vec{v} \\
& \vec{r}=r(t) \hat{e}_{r}(t) \\
& \vec{v}=\dot{r} \hat{e}_{r}+r \dot{e}_{r} \\
&=\dot{r} \hat{e}_{r}+r \dot{\phi} \hat{e}_{\phi} \\
& \vec{l}=m r \hat{e}_{r} \times\left(\dot{r} \hat{e}_{r}+r \dot{\phi} \hat{e}_{\phi}\right) \\
&= m r^{2} \dot{\phi} \hat{e}_{z}
\end{aligned}
$$

$\therefore \frac{d A}{d t}=\frac{l}{2 m} \quad b^{\prime}$ constant
The area rate is constant because angular momentum is constant.
Homework Assignment \#6 due in class Wednesday, October 11
[27] Problem 3.16 *
[28] Problem 3.20 **
[29] Problem 3.22 **
[30] Problem $3.27^{* *}$
[31] Problem 3.32 **
[32] Problem 3.35 **
Use the cover sheet.

## The first midterm exam is Friday, October 6.

