Chapter 4. Energy

- □ 4.1 kinetic energy and work
- 4.2 potential energy and conservative forces
- 4.3/4 force and potential energy
- 4.5 time-dependent potential energy
- 4.6 energy for linear 1D systems
- □ 4.7 curvilinear 1D systems
- □ 4.8 central forces
- □ 4.9/10 energy of interaction

2 weeks

Homework Assignment #7 due in class Wednesday, October 18

[31] Problem 4.3 **
[32] Problem 4.8 **
[33] Problem 4.9 **
[34] Problem 4.10 *
[35] Problem 4.18 **
[36] Problem 4.23 **
[37] three exam questions (write full solutions)

Use the cover page.

Hints for the exam questions:

(1) $\mathbf{r}(t) = \mathbf{e}_{\mathbf{x}} \operatorname{R} \cos(\varphi) + \mathbf{e}_{\mathbf{y}} \operatorname{R} \sin(\varphi)$

(2) answer a : vT = SQRT[(mg sin θ)/c]

(3) answer b : v = 2.93 km/s at burnout

What is energy?

From the Oxford Dictionary of Physics ...

Energy: "A measure of a system's ability to do work."

OK, then, what is "work"?

Oxford Dictionary of Physics ...

Work: "the scalar product of force and displacement vectors".

General comments

- Energy is an abstract concept;
 - "abstract" meaning mathematical.
- The concept of energy originates in mechanics; Chapter 4.
- Use of the word:
 - Thomas Young, 1802;
 - G G Coriolis, "kinetic energy", 1829;
 - William Rankine, "potential energy", 1853
- For many years in the 19th century, scientists argued whether energy is a substance ("the *caloric"*) or merely a mathematical concept.
- But the concept of energy goes beyond mechanics.

The concept of energy is a unifying principle in physics, and in all the sciences.

Math Concepts in Mechanics

Momentum **p** = m **v** d**p** = **F(r)** dt

an eq. of motion

• Kinetic energy T = $\frac{1}{2}$ m v² dT = **F(r)** · **v** dt

|an eq. of motion

• Potential energy U(\mathbf{r}) dU = - $\mathbf{F}(\mathbf{r}) \cdot d\mathbf{r}$

an eq. of position

4.1. KINETIC ENERGY AND WORK

The kinetic energy of a particle (i.e., due to translational motion) ; notation = T ;

 $T = \frac{1}{2} mv^2$

Calculate dT/dt

Figure 4.1 Three points on the path of a particle: $\mathbf{r}_1, \mathbf{r}_1 + d\mathbf{r}$ (with $d\mathbf{r}$ infinitesimal) and \mathbf{r}_2 .

The Work–Kinetic Energy Theorem

 $dT = F \cdot dr = work$

or, $\Delta T = \int \mathbf{F} \cdot \mathbf{dr}$

or,
$$dT/dt = \mathbf{F} \cdot \mathbf{v}$$

In these equations, d**r** means a displacement along the trajectory of the particle's motion.

4.2. POTENTIAL ENERGY

For a <u>conservative force</u>, we may define a potential energy function; notation U(**r**).

• Definition of a "conservative force":

A force is conservative if (i) *F* depends only on *r*; <u>and</u> (ii) the work done by *F* when the particle moves from r_1 to r_2 is independent of the path from r_1 to r_2 .

Definition of Work

 $\mathbf{W} = \int_{\Gamma} \boldsymbol{F} \cdot d\boldsymbol{r} \qquad \leftarrow a \ line \ integral$

Γ is an arbitrary path in space from r_1 to r_2 ; Γ is not necessarily the "trajectory"!

For a conservative force the Work depends on the endpoints, but the Work is the same for all paths connecting the endpoints.

Example 4.1

Three line integrals

Figure 4.2 Three different paths, a, b, and c, from the origin to the point P = (1, 1).

For a conservative force,

$$W_a = W_b = W_c = - [U(P) - U(0)]$$

where $W_{\alpha} = \int_{\alpha} \boldsymbol{F} \cdot d\boldsymbol{r}$ (def. of work)

For a conservative force,

- W = the work done by **F**;
- U(**r**) = the potential energy corresponding to **F**.

Taylor's Example 4.2

The potential energy for a charge q in a static (*time independent*) electric field **E(r)** .

 $U(\mathbf{r}_1) - U(\mathbf{r}_2) = \int_{\Gamma} q \mathbf{E} . d\mathbf{r}$

Recall from PHY 184: for a static field,

$$\mathbf{E} = -\nabla \mathbf{V};$$
 (V = voltage)

SO

$$U(\mathbf{r}_{1}) - U(\mathbf{r}_{2}) = - [q V(\mathbf{r}_{2}) - q V(\mathbf{r}_{1})]$$
$$U(\mathbf{r}_{i}) = q V(\mathbf{r}_{i})$$

Suppose that q is positive; then the potential energy is high where the voltage is high; the force points from higher potential energy to lower potential energy.

Example

The gravitational potential energy of the Earth, *due to the gravitational force exerted by the Sun* ...

Newton's theory,

$$F(r) = -\frac{GMm}{r^2} e_r$$
$$U(r) = -\frac{GMm}{m}$$

Why is U(**r**) negative?

(1) U(r) – U(∞) = $\int_{r}^{\infty} (-GMm)/r'^2 dr'$

=
$$GMm/r' \mid_r^{\infty} = - GMm/r$$

(2) Or: increasing r is like "going up hill".

TT

Mechanical energy of a particle

E = T + U

$$E = \frac{1}{2} m v^2 + U(r)$$

Why is this important?

Theorem:

If the force is conservative then E is a constant of the motion.

Proof:

Several Forces Suppose m di = F, + F2 + F3 ... + F where all the forces are conservative. Each force has a corresponding P.E., F. > U.(7) Then $\frac{dT}{dt} = \sum_{i=1}^{m} \vec{F_{1}} \cdot \vec{U} = \sum_{i=1}^{n} \vec{F_{1}} \cdot d\vec{r} / dt$ $=\sum_{i=1}^{n}-\frac{dV_{i}}{dt}$ $E = T + \sum_{i=1}^{n} U_i$ is constant. $\frac{dE}{dt} = 0$ "total mechanical energy" Note: $\Delta U = -W$: so $dU = -F \cdot dR$:

Note: $\Delta U = -W$; so dU = -F. that is, $\partial U/\partial \mathbf{r}_i = -F_i$.

Nonconservative Forces Suppose m dv = Fens + Fra Define E = 1/2 m v2 + Ucors. dE = mu. du + d Ucms. = V.F dt - Fine . dr = $(\vec{F} - \vec{F}_{cons}) \cdot d\vec{r} = \vec{F}_{nc} \cdot d\vec{r}$ $\Delta E = \int \vec{F}_{nc} \cdot d\vec{r} = W_{nc}$

Example 4.3 *a block sliding down an incline* We solved this example before using forces. Now, use *energies* to find the final velocity. Friction is not conservative; *so the principle is*, $\Delta(T+U) = W_{nc}$

Figure 4.6 A block on an incline of angle θ . The length of the slope is d, and the height is $h = d \sin \theta$.

Example. Calculate the *escape velocity* from the surface of the Earth.

That is, if an object is at the surface of the Earth and moving upward with speed $v > v_{escape}$, then the object will escape from Earth's gravity.

 $E = \frac{1}{2}mv_r^2 - \frac{GMm}{r}$ (Constant) $\frac{1}{2}mV_R^2 - \frac{GMm}{R} = \frac{1}{2}mV_w^2$ UR > 1/2GM = 11,200 m/s

Homework Assignment #7 due in class Wednesday, October 18

[31] Problem 4.3 **
[32] Problem 4.8 **
[33] Problem 4.9 **
[34] Problem 4.10 *
[35] Problem 4.18 **
[36] Problem 4.23 **
[37] three exam questions (write full solutions)

Use the cover page

This is a pretty long assignment, so start working on it today.