- Section 4.3: Force as the gradient of potential energy
- Section 4.4: The second condition for a force to be conservative

The gradient operator (∇, called "del") in Cartesian coordinates, is

$$
\nabla=\boldsymbol{e}_{x}(\partial / \partial x)+\boldsymbol{e}_{y}(\partial / \partial y)+\boldsymbol{e}_{z}(\partial / \partial z)
$$

The Oxford Dictionary of Physics:

Given a scalar function f and a unit

 vector n, the scalar product $n . \nabla f$ is the rate of change of f in the direction of n.Sec. 4.3. $\quad \mathbf{F}=-\nabla \mathrm{U}$
Theorem. A conservative force is equal to the negative gradient of the corresponding potential energy function.
Proof

$$
\begin{aligned}
& \text { Recall } \Delta U=-w \\
& \text { lie. } U(\vec{r})-V\left(\overrightarrow{r_{0}}\right)=-\int_{\vec{r}_{0}}^{\vec{r}} \vec{F}\left(\vec{r}^{\prime}\right) \cdot d \vec{r}^{\prime}
\end{aligned}
$$

$$
\text { Now } \begin{aligned}
\frac{\partial U}{\partial x} & =[U(\vec{r}+\epsilon \hat{x})-U(\vec{r})] / \epsilon \quad(\text { lime } . \epsilon \rightarrow 0) \\
& \left.=-\int_{\vec{r}_{0}}^{\vec{r}+\epsilon \hat{x}}+\int_{\vec{F}_{0}}^{\vec{r}}\right] \vec{F} \cdot d \vec{r}^{\prime} / \epsilon \\
& =-\int_{\vec{r}}^{\vec{r}+\epsilon \hat{x}} \frac{\overrightarrow{F_{1}} \cdot d \vec{r}^{\prime}}{\epsilon}=-F(\vec{r}) \cdot \hat{x}
\end{aligned}
$$

$$
\text { So } \frac{\partial U}{\partial x}=-F_{x} ; \text { or, } F_{x}=-\frac{\partial v}{\partial x} \text {. }
$$

$$
\text { Generalize, } \quad \vec{F}=-\nabla v \text {. }
$$

Example 4.4

finding \boldsymbol{F} from U
I $\quad \boldsymbol{F}=-\nabla \mathrm{U} \leftarrow$
I U is a scalar; \boldsymbol{F} is a vector.
I In Cartesian coordinates, the gradient of U is the vector of partial derivatives.

Taylor gives this example:

$$
\mathrm{U}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{Axy}^{2}+\mathrm{B} \sin \mathrm{Cz}
$$

$\therefore \quad F_{x}=-A y^{2} \quad ; \quad F_{y}=-2 A x y$;

$$
\mathrm{F}_{\mathrm{z}}=-\mathrm{BC} \cos \mathrm{Cz}
$$

\Rightarrow partial derivatives \leftarrow

A 2d example
$\mathrm{U}(\mathrm{x}, \mathrm{y})=\mathrm{x} \mathrm{y}{ }^{2}$

The gradient of U is a vector function, $\nabla \mathrm{U}(\boldsymbol{r})$; $\mathrm{dU}=\nabla \mathrm{U} \cdot \mathrm{d} \boldsymbol{r}$;
Magnitude and Direction of $\nabla \mathrm{U}$:
The maximum rate of change of U is $|\nabla \mathrm{U}|$, and the direction of the max rate of change
is parallel to $\nabla \mathrm{U}$. Note that $\nabla \mathrm{U}$ points from low U to high U.

I In spherical polar coordinates, see the formulas inside the back cover of the book;

$$
=\hat{\mathbf{r}} \frac{\partial f}{\partial r}+\hat{\theta} \frac{1}{r} \frac{\partial f}{\partial \theta}+\hat{\phi} \frac{1}{r \sin \theta} \frac{\partial f}{\partial \phi}
$$

Here is an example that shows the meaning of the gradient.

Consider a mass m on a plane (xy), repelled from the origin. The picture shows a surface plot of $\mathrm{U}(\mathrm{x}, \mathrm{y})$.

Understand: This shows a mass on a plane, not a mass on a hill!

- The potential energy function is $U(x, y)=A \operatorname{Exp}\left[-x^{2}-y^{2}\right]$.
- The gradient of $\mathrm{U}=\mathrm{U}(\mathrm{x}, \mathrm{y})$ is

$$
\begin{aligned}
\frac{\partial U}{\partial x} & =A e^{-\left(x^{2}+y^{2}\right)}(-2 x) \\
\nabla U & =-2 A e^{-\left(x^{2}+y^{2}\right)}\left[x \hat{\rho}_{x}+y \hat{e}_{4}\right] \\
& =-2 A e^{-\left(x^{2}+y^{2}\right)} \vec{r} \\
& =-2 A e^{-r^{2}} \vec{r}
\end{aligned}
$$

- Direction: $-\hat{\mathbf{r}}$
- Magnitude: $2 \mathrm{Ar} \exp \left(-\mathrm{r}^{2}\right)$

The force points radially away from the origin; F points from high potential energy toward low potential energy.

SEC. 4.4. THE SECOND CONDITION FOR A FORCE TO BE CONSERVATIVE.

First, we define another differential operator of vector calculus.

The curl operator, $\nabla \times A$

Oxford Dictionary of Physics: "Curl: The vector product of the gradient operator with a vector function."
\boldsymbol{A} is a vector, and $\nabla \times \boldsymbol{A}$ is also a vector.

$$
\begin{aligned}
\hat{\nabla} \times \mathbf{A}= & \hat{\mathbf{x}}\left(\frac{\partial}{\partial y} A_{z}-\frac{\partial}{\partial z} A_{y}\right)+\hat{\mathbf{y}}\left(\frac{\partial}{\partial z} A_{x}-\frac{\partial}{\partial x} A_{z}\right) \\
& +\hat{\mathbf{z}}\left(\frac{\partial}{\partial x} A_{y}-\frac{\partial}{\partial y} A_{x}\right) \quad \text { [Cartesian] } \\
= & \hat{\mathbf{r}} \frac{1}{r \sin \theta}\left[\frac{\partial}{\partial \theta}\left(\sin \theta A_{\phi}\right)-\frac{\partial}{\partial \phi} A_{\theta}\right]+\hat{\theta}\left[\frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} A_{r}-\frac{1}{r} \frac{\partial}{\partial r}\left(r A_{\phi}\right)\right] \\
& +\hat{\phi} \frac{1}{r}\left[\frac{\partial}{\partial r}\left(r A_{\theta}\right)-\frac{\partial}{\partial \theta} A_{r}\right] \quad \text { [spherical polar] }
\end{aligned}
$$

Theorem

For a conservative force \boldsymbol{F},

$$
\nabla \times \boldsymbol{F}=0 .
$$

Proof:
The curl of a gradient is always $0 .$. .

$$
\begin{aligned}
& \text { The } \hat{x} \text { component of } \nabla \times \vec{A} \text { b } \\
& \bar{X}=\frac{\partial A_{z}}{\partial y}-\frac{\partial A_{y}}{\partial z}
\end{aligned}
$$

Now suppose $\bar{A}=\nabla \alpha$ where $\alpha=\alpha(x, y, z)$.
Ten

$$
\begin{aligned}
B & =\frac{\partial}{\partial y} \frac{\partial \alpha}{\partial z}-\frac{\partial}{\partial z} \frac{\partial \alpha}{\partial y} \\
& =\frac{\partial^{2} \alpha}{\partial y \partial z}-\frac{\partial^{2} \alpha}{\partial z \partial y}=0
\end{aligned}
$$

Since \boldsymbol{F} can be written as a gradient, i.e., $\mathbf{F}=-\nabla \mathrm{U}$,

$$
\nabla \times \boldsymbol{F}=0 . \quad Q E D
$$

DEFINITION A fra \vec{F} is conservative if
(i) \vec{F} depends only on \vec{r}
and (ii) $\int_{a}^{b} \vec{F} \cdot d \vec{r}$ is independent of the path from a to b.
or (ii') $\nabla \times \vec{F}=0$.
THEOREM If \vec{F} is conservative then we can write $\vec{F}=-\nabla V$.

Example 4.5

Is the Coulomb force conservative?

Figure 4.7

(a)

(b)

Figure 4.7 (a) The Coulomb force $\mathbf{F}=\gamma \hat{\mathbf{r}} / r^{2}$ of the fixed charge Q on the charge q. (b) The work done by \mathbf{F} as q moves from \mathbf{r}_{0} to \mathbf{r} can be evaluated following a path that goes radially outward to P and then around a circle to \mathbf{r}.

$$
\boldsymbol{F}(\boldsymbol{r})=\hat{\boldsymbol{e}}_{\boldsymbol{r}} \gamma / \mathrm{r}^{2}=\overrightarrow{\mathbf{r}}_{\gamma} / \mathrm{r}^{3}
$$

What is the potential energy function?

Assuming F is conservative,

$$
\begin{aligned}
W\left(\vec{r}_{0} \rightarrow \vec{r}\right) & =\underbrace{P}_{\int_{r_{0}}^{r_{0}} \frac{\gamma}{r^{\prime 2}} d r^{\prime}} \frac{\gamma \hat{e}_{x}}{r^{\prime 2}} \cdot \hat{e}_{x} d r^{\prime}
\end{aligned} \underbrace{\int_{P}^{\vec{r}} \frac{\gamma \hat{r}}{r^{2}} \cdot \hat{e}_{\phi} r d \phi}_{\hat{r} \perp \hat{e}_{\phi}}
$$

\therefore The Coulomb force is

$$
U(r)=\gamma / r
$$ conservative, and the potential energy is γ / r.

$$
\begin{aligned}
& \text { Exercise: Prove } \nabla \times \vec{F}=0 \\
& \text { (i) in Cartesian coordinates; } \\
& \text { (ii) in Polar coordinates. }
\end{aligned}
$$

So, we have two criteria ...
(ii) The work done by the force (on the object on which the force acts) as the object moves from \boldsymbol{a} to \boldsymbol{b} is independent of the path from \boldsymbol{a} to \boldsymbol{b};

$$
\begin{aligned}
\mathrm{W}(a & \rightarrow b)=\int_{\Gamma} \mathbf{F} . \mathrm{d} \boldsymbol{r} \\
& =\mathrm{U}(a)-\mathrm{U}(b), \quad \text { indep. of path } \Gamma ;
\end{aligned}
$$

or, (ii') The curl of \boldsymbol{F} is $\mathbf{0}$.
Taylor problem 4.25: "The proof that the condition $\boldsymbol{\nabla} \boldsymbol{\times}=0$ guarantees the path independence of the work $\int_{1}^{2} \mathbf{F} . \mathrm{d} \boldsymbol{r}$ done by \mathbf{F} is unfortunately too lengthy to be included here." And then Taylor assigns it as a homework problem!

Stokes's theorem

This is a famous theorem in vector calculus, similar to Gauss's theorem.

Recall Gauss's theorem:

$$
\int_{V} \nabla \cdot \vec{A} d^{3} r=\oint_{S=\text { boundary of } V} \hat{\hat{A}} \vec{A} d S
$$

Stokes's theorem:

$$
\int_{S}(\nabla \times \vec{A}) \cdot \hat{n} d S=\oint_{C=\text { boundary of } S} \vec{A} \cdot d \vec{r}
$$

Now, suppose $\nabla \boldsymbol{F}=\mathbf{0}$.
Then Stokes's theorem implies $\oint \mathbf{F} . \mathbf{d r}=0$, around any closed path.
Therefore $\int_{a}^{b} \mathbf{F} . \mathbf{d r}^{\mathrm{b}}$ is path independent, because $\mathrm{a} \rightarrow \mathrm{b} \rightarrow \mathrm{a}$ is a closed path ;
$\left(\int_{a}{ }^{\mathrm{b}} \mathbf{F} . \mathbf{d r}\right)_{1}-\left(\int_{\mathrm{a}}{ }^{\mathrm{b}} \mathbf{F} . \mathbf{d r}\right)_{2}=0$.

Check your understanding:
Use both Cartesian coordinates and spherical polar coordinates. Use the formulas in the back cover of the book.

Prove:

$$
\begin{aligned}
& \nabla r=\mathbf{e}_{\mathbf{r}} \\
& \nabla \times \mathbf{r}=\mathbf{0} \\
& \nabla \times\left(\mathbf{e}_{\varphi}\right)=\mathbf{e}_{z} /(r \sin \theta)
\end{aligned}
$$

Homework Assignment \#7
due in class Wednesday, October 18
[31] Problem 4.3 **
[32] Problem 4.8 **
[33] Problem 4.9 **
[34] Problem 4.10 *
[35] Problem 4.18 **
[36] Problem 4.23 **
[37] the three exam questions (hints are available in the lecture of October 9).
Use the cover sheet!

