Quiz Question (FRI 13)

$$
\begin{gathered}
x_{0}=-1 m \quad v=0 \\
v_{0}=2 m / s \quad v / m=3 s^{-2} \\
k / m=E=\text { constant } \\
\frac{1}{2} m v^{2}+\frac{1}{2} x^{2}=E \\
\frac{1}{2} m v_{0}^{2}+\frac{1}{2} k x_{0}^{2}=\frac{1}{2} k x_{f}^{2} \\
x_{f}=\sqrt{x_{0}^{2}+\frac{m_{1} v_{0}^{2}}{k}}=\sqrt{1+\frac{4}{3}} m=\sqrt{\frac{7}{3} m}
\end{gathered}
$$

Continuing Chapter 4 - Energy
Starting now, PHY 321 becomes more difficult.

SECTION	TITLE	
4.6	Energy in linear motion	MONDAY
4.7	Curvilinear motion, and 1D systems	MONDAY
4.8	Central forces	WEDNESDAY
4.9	Energy for a system of 2 particles	FRIDAY
4.10	Energy for many particles, and rigid bodies	FRIDAY

Homework Assignment 8 includes four computer problems.

Section 4.6. Energy in linear motion

 (Review)We went over this last time, and you have already read Section 4.6.

Here we are concerned with linear motion of a particle in a potential.

- the coordinate is x
- the equation of motion is

$$
m \ddot{x}=F(x)=-d U / d x
$$

- the energies are $T=1 / 2 \mathrm{~m} \dot{\mathrm{x}}^{2}$ and $\mathrm{U}(\mathrm{x})$

Solve the equation of motion
The first integral ($\mathbf{x}^{\prime \prime} \Rightarrow \mathbf{x}^{\prime}$) comes from conservation of energy

$$
\dot{x}= \pm \sqrt{\frac{2}{m}[E-v(x)]}
$$

The second integral ($\mathbf{x}^{\prime} \boldsymbol{\Rightarrow} \boldsymbol{x}$) comes from the time calculation

$$
d t^{\prime}=\frac{d x^{\prime}}{v}=\frac{d x^{\prime}}{\ddot{x}}
$$

Details - the sign and the turning points and the energy - need to be worked out ...
$\int_{t_{0}}^{t} d t^{\prime}=\int_{x_{0}}^{x} \frac{d x^{\prime}}{ \pm \sqrt{\frac{2}{2}\left[E-v\left(x^{\prime}\right)\right]}}$

$$
t-t_{0}= \pm \sqrt{\frac{m}{2}} \int_{x_{0}}^{x} \frac{d x^{\prime}}{\sqrt{E-U\left(x^{\prime}\right)}}
$$

A trivial example: the free fall problem; we did it last time.

A less trivial example: a mass on a spring; Taylor Problem 4.28. (assigned)

Here is a nontrivial example:
A particle moves on the x axis, with $x>0$, and the potential energy is $\mathrm{U}(\mathrm{x})=\alpha / \mathrm{x}$. Assume α is positive, so the particles is repelled from the origin.

For example, consider a fixed charge at the origin and a moving charge (the "particle") on the positive x axis.

Suppose the particle is released from rest at x_{0}. Calculate $\mathrm{x}(\mathrm{t})$.

Sketch a picture.

$$
\mathrm{U}(\mathrm{x})=\alpha / \mathrm{x}
$$

The problem is to calculate $\mathrm{x}(\mathrm{t})$.

Equations

$$
\begin{gathered}
m \mathrm{x}=\alpha / \mathrm{x}^{2} \\
\mathrm{x}(0)=\mathrm{x}_{0} \text { and } \dot{\mathrm{x}}(0)=0
\end{gathered}
$$

We cant solve them directly.
We'll use the conservation of energy to get the first integral.

1. Conservation of energy

$$
\begin{aligned}
& E=\frac{1}{2} m \dot{x}^{2}+\frac{\alpha}{x}=\frac{\alpha}{x_{0}} \\
& \dot{x}^{2}=\frac{2 \alpha}{m}\left(\frac{1}{x_{0}}-\frac{1}{x}\right) \\
& \dot{x}=+\sqrt{\frac{2 \alpha}{m x_{0}}}\left(1-\frac{x_{0}}{x}\right)^{\frac{1}{2}}
\end{aligned}
$$

2. The time calculation

$$
\begin{aligned}
& d t^{\prime}=\frac{d x^{\prime}}{v}=\frac{d x^{\prime}}{\dot{x}} \\
& \int_{0}^{t} d t^{\prime}=\int_{x_{0}}^{x} \frac{d x^{\prime}}{\sqrt{\frac{2 \alpha}{m+x}}\left(1-x / x^{\prime}\right)^{\frac{1}{2}}} \\
& t=\sqrt{\frac{m x}{2 \alpha}} \int_{x_{0}}^{x}\left(\frac{x^{\prime}}{x^{\prime}-x_{0}}\right)^{1 / 2} d x^{\prime} \\
& t=\sqrt{\frac{m x_{0}^{3}}{2 \alpha}} \int_{1}^{x\left(x_{0}\right.}\left(\frac{u}{u-1}\right)^{\frac{1}{2}} d x
\end{aligned}
$$

3. Final Result

$$
\begin{aligned}
& t=\sqrt{\frac{m x_{0}^{3}}{2 \alpha}}\left\{\left[\frac{x}{x_{0}}\left(\frac{x}{x_{0}}-1\right)^{12}+\arcsin h\left[\left(\frac{x}{x}-1\right)^{\frac{1}{2}}\right]\right\}\right. \\
& t=\sqrt{\frac{m x^{3}}{2 \alpha}}\left\{\frac{1}{2} \sinh 2 \psi+\psi\right\} \leftarrow \text { baratanchive } \\
& \text { whee } \sinh \psi=\left(\frac{x}{x_{0}}-1\right)^{1 / 2} ; x=x_{0} \cosh ^{2} \psi \psi
\end{aligned}
$$

Section 4.7. Curvilinear motion and other examples of one-dimensional motion

A system is called "one-dimensional" if the configuration is determined by a single dynamical variable.

Linear motion is strictly one-dimensional; but it's not the only kind of "one-dimensional" motion in the generalized sense.

Curvilinear Motion

Consider a particle that is constrained to move on a curve. That is
"one-dimensional" because only a single variable is required to specify the position of the particle.

$$
\mathrm{s}=\text { arclength }
$$

Figure 4.13 An object constrained to move on a curved track can be considered to be a one-dimensional system, with the position specified by the distance s (measured

Even this train moving on a curve is an example of one-dimensional motion in the generalized sense;
the configuration of the moving object is determined by a single variable, $\mathrm{s}(\mathrm{t})$.

Curvilinear Motion

Figure 4.13 An object constrained to move on a curved track can be considered to be a one-dimensional system, with the position specified by the distance s (measured

I The variable is $s=$ arclength ; $s=s(\mathrm{t})$
I The force equation is $\mathrm{ms}=\mathrm{F}_{\text {tangential }}$
I The energies are $T=1 / 2 \mathrm{~m} \mathrm{~s}^{2}$

$$
\text { and } U(s) \text { where } F_{\text {tang. }}=-d U / d s
$$

I But what keeps the particle on the curve?

Picture m as a bead threaded on a stiff wire.

Normal force
\equiv force of constraint;
\equiv keeps the particle on the curve ;
\equiv but it does no work!!! ;
$\equiv \Delta \mathrm{T}$ comes only from $\mathrm{F}_{\text {tang. }}$.

The Simple Pendulum
(Taylor Problems 4.34 and 4.38)

The mass moves on a circular arc.
I The variable is $\theta=$ angle; $\quad \theta=\theta(\mathrm{t})$
I The force equation? requires torque
I The energies are $T=1 / 2 \mathrm{~mL}^{2}(\theta)^{2}$ and $\mathrm{U}(\theta)=\mathrm{mgy}=\mathrm{mg} \mathrm{L}(1-\cos \theta)$

I The equation of motion.
We could write $\mathrm{d} \boldsymbol{l} / \mathrm{dt}=$ torque;
or, $\mathrm{dE} / \mathrm{dt}=0$ implies

$$
\frac{1}{2} m L^{2} 2 \dot{\theta} \ddot{\theta}+m g L \sin \theta \dot{\theta}=0
$$

$$
\ddot{\theta}=-\frac{g}{L} \sin \theta
$$

the simple pendulum
This is "1-dimensional" in the
generalized sense:
\exists a single dynamical variable.
Assigned in the homework.

Example 4.7
 STABILITY OF A CUBE BALANCED ON A CYLINDER

Figure 4.14 A cube, of side $2 b$ and center C, is placed on a fixed horizontal cylinder of radius r and

The cylinder is fixed.
The cube is free to roll from side to side, not slipping on the cylinder. \{center directly above center for $\theta=0$ \}

Calculate $\mathrm{U}(\theta)$.

This is a " 1 d " problem; the variable is θ. Analyze the potential energy. (See the Figure.)

Let $\mathrm{h}=$ the height of the center of mass of the cube. Then $U=m g h$. Now express h in terms of the angle θ.

Example 4.7
STABILITY OF A CUBE BALANCED ON A CYLINDER

Figure 4.14 A cube, of side $2 b$ and center C, is placed on a fixed horizontal cylinder of radius r and

Geometrical analysis

$$
\begin{aligned}
& r \theta=d=C B \\
& h=(r+b) \cos \theta+d \sin \theta \\
& U(\theta)=m g h=m g[(r+b) \cos \theta+r \theta \sin (\theta)]
\end{aligned}
$$

Condition for equilibrium

$$
\frac{d U}{d \theta}=\pi g[-(r+b) \sin \theta+r \sin \theta+r \theta \cos \theta]
$$

$$
U^{\prime}(0)=0 \text { so } \theta=0 \text { is an excitiorium anffacotion }
$$

Condition for stability

$$
\begin{aligned}
& \frac{d^{2} U}{d \theta^{2}}=m g[-b \cos \theta+r \cos \theta-r \theta \sin \theta] \\
& U^{\prime \prime \prime}(0)=m g(r-b)
\end{aligned}
$$

The condition for stability in $z^{\prime \prime}(\%) \geqslant 0 ; b \leq r$

STABILITY ANALYSIS

Plot $\mathrm{U}(\theta)$ for different values of b / r. (2r=diameter; 2b = width)

The cube balanced at $\theta=0$ is stable if $\mathrm{b} \leqq \mathrm{r}$;
i.e., $\theta=0$ is a stable equilibrium
if the width of the cube is smaller than the diameter of the cylinder.

Another example:

The Atwood machine

Figure 4.15

Atwood machine

The configuration depends on a single
variable (x) because the length of the string is constant (L);
$\mathrm{L}=\mathrm{x}_{2}+\pi \mathrm{R}+x$; or $\quad \mathrm{x}_{2}=\mathrm{L}-\pi \mathrm{R}-x$
Analysis by energies:

$$
\begin{aligned}
& T=T_{1}+T_{2}=1 / 2\left(m_{1}+m_{2}\right) x^{\prime 2} \\
& \left.U_{1}=-m_{1} g x \quad \text { (xis downward }\right) \\
& U_{2}=-m_{2} g x_{2}=+m_{2} g x+\text { constant } \\
& \quad E=1 / 2\left(m_{1}+m_{2}\right) x^{\prime 2}+\left(m_{2}-m_{1}\right) g x
\end{aligned}
$$

Energy is constant, so
$d E / d t=0=\left(m_{1}+m_{2}\right) x^{\prime} x^{\prime \prime}+\left(m_{2}-m_{1}\right) g x^{\prime}$

$$
\left(m_{1}+m_{2}\right) x^{\prime \prime}=\left(m_{1}-m_{2}\right) g
$$

Result : constant acceleration,

$$
a=\left(m_{1}-m_{2}\right) /\left(m_{1}+m_{2}\right) g
$$

```
Homework Assignment \#8
due in class Wednesday, October 25
[37] Problem 4.26 *
[38] Problem \(4.28^{* *}\) and Problem \(4.29^{* *}\) [Computer]
[39] Problem \(4.33^{* *}\) [Computer]
[40] Problem 4.34 **
[41] Problem \(4.37^{* * *}\) [Computer]
[42] Problem \(4.38^{* * *}\) [Computer]
Use the cover page.
- This is a long assignment, so start working on it now.
- Work together with 1 or 2 other students on the computer calculations.
```

