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Continuing Chapter 4 - Energy

Starting now, PHY 321 becomes more difficult.

Homework Assignment 8 includes four computer problems.
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SECTION TITLE

4.6 Energy in linear motion MONDAY

4.7 Curvilinear motion, and 1D systems MONDAY

4.8 Central forces WEDNESDAY

4.9 Energy for a system of 2 particles FRIDAY

4.10 Energy for many particles, and rigid bodies FRIDAY

0



Solve the equation of motion
The first integral (x′′ ➡ x′ ) comes from 
conservation of energy 

The second integral (x′ ➡ x ) comes from the 
time calculation

Details − the sign and the turning points and the 
energy − need to be worked out ...
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Section 4.6. Energy in linear motion
(Review)
We went over this last time, and you 
have already read Section 4.6.

Here we are concerned with linear 
motion of a particle in a potential.

❏ the coordinate is x

❏ the equation of motion is

mx = F(x) = − dU/dx

❏ the energies are T = ½ m x2 and 
U(x)

••

•
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dx'



Sketch a picture.

energy

                            

The problem is to calculate x(t).

                                    U(x) = α /x

                                                  E

  
                                                             m                              x
                           0
                                          x0               x(t)            
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A trivial example: the free fall problem;
we did it last time.

A less trivial example: a mass on a spring; 
Taylor Problem 4.28. (assigned)

Here is a nontrivial example:

A particle moves on the x axis, with x > 0, 
and the potential energy is U(x) = α /x.
Assume  α is positive,  so the particles is 
repelled from the origin.

For example, consider a fixed charge at the 
origin and a moving charge (the "particle") 
on the positive x axis.

Suppose the particle is released from rest 
at x0 . Calculate x(t).
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2. The time calculation

3. Final Result

'          '           '
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Equations

We can't solve them directly.
We'll use the conservation of energy to get 
the first integral.

1. Conservation of energy

eq

                 ..
m x = α /x2 

                            .
x(0) = x0   and   x(0) = 0

                 ..
m x = α /x2 

                            .
x(0) = x0   and   x(0) = 0
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Section 4.7. Curvilinear motion and 
other examples of one-dimensional 
motion

A system is called "one-dimensional" 
if the configuration is determined by 
a single dynamical variable.

Linear motion is strictly 
one-dimensional; but it's not the 
only kind of "one-dimensional" 
motion in the generalized sense.

Curvilinear Motion
Consider a particle that is constrained to 
move on a curve. That is 
"one-dimensional" because only a single 
variable is required to specify the 
position of the particle.

s = arclength

Figure 4.13
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Even this train moving 
on a curve is an 
example of 
one-dimensional 
motion in the 
generalized sense;

the configuration of the 
moving object is 
determined by a single 
variable,    s ( t ) .
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Curvilinear Motion

Figure 4.13.

∎ The variable is s = arclength ; s = s(t)

∎ The force equation is m s   =  Ftangential

∎ The energies are  T = ½ m s2 

and U(s) where Ftang. = − dU/ds
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∎ But what keeps the particle on the 
curve?

Picture m as a bead
threaded on a stiff
wire.

Normal force
≡ force of constraint ;
≡ keeps the particle on the curve ;
≡ but it does no work!!!  ; 
≡ ΔT comes only from Ftang.   .

‥

・

2



9

∎ The equation of motion.

We could write dl /dt = torque;

or, dE /dt = 0 implies

This is "1-dimensional" in the 
generalized sense: 

∃  a single dynamical variable . 

Assigned in the homework.

The Simple Pendulum
(Taylor Problems 4.34 and 4.38)

y

The mass moves on a circular arc.

∎ The variable is θ = angle;      θ = θ(t)

∎ The force equation ?  requires torque

∎ The energies are    T = ½ m L2 ( θ )2

and U(θ) = mgy = mg L (1 − cos θ)

•
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This is a "1d" problem; the variable is θ.
Analyze the potential energy. (See the Figure.)

Let h = the height of the center of mass of the 
cube. Then U = m g h . Now express h in terms of 
the angle θ .

Example 4.7
STABILITY OF A CUBE

BALANCED ON A CYLINDER
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The cylinder is fixed.

The cube is free to roll from side to 
side, not slipping on the cylinder.
{center directly above center for θ=0}

Calculate U(θ).
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Example 4.7
STABILITY OF A CUBE

BALANCED ON A CYLINDER
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Geometrical analysis

Condition for equilibrium

Condition for stability

CB = d

3b
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STABILITY ANALYSIS

Plot U(θ) for different values of b/r .
(2r=diameter; 2b = width)

The cube balanced at θ = 0 is stable
if b ≦ r ;

i.e.,  θ = 0 is a stable equilibrium
if the width of the cube is smaller than 
the diameter of the cylinder.

Assigned Problem 4.33.
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Another example:

The Atwood machine

Figure 4.15

Atwood machine
The configuration depends on a single 
variable (x) because the length of the string is 
constant (L);

L = x2 + π R + x ; or x2 = L − π R − x

Analysis by energies:
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x2

T = T1 + T2 = ½ (m1+m2) x'2

U1= − m1g x (x is downward)

U2= − m2g x2 = + m2g x + constant

E = ½ (m1 + m2) x'2 +  (m2 − m1) g x

Energy is constant, so
dE /dt = 0 = (m1 + m2) x' x'' + (m2 − m1) g x'

(m1 + m2) x'' = (m1 − m2) g

Result : constant acceleration,
a =  (m1 − m2) / (m1 + m2)  g
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Homework Assignment #8
due in class Wednesday, October 25
[37] Problem 4.26 *
[38] Problem 4.28 ** and Problem 4.29 ** [Computer]
[39] Problem 4.33 ** [Computer]
[40] Problem 4.34 **
[41] Problem 4.37 *** [Computer]
[42] Problem 4.38 *** [Computer]

Use the cover page.

● This is a long assignment, so start working on it 
now. 

● Work together with 1 or 2 other students on the 
computer calculations.

hw


