4.8. Central forces

The most interesting problems in classical mechanics are about central forces.

Definition of a central force:
(i) the direction of the force $\boldsymbol{F}(\boldsymbol{r})$ is parallel or antiparallel to \boldsymbol{r};
in other words, for any position of the object on which F is acting, the direction of \boldsymbol{F} points toward or away from the origin.
\{attraction to O or repulsion from 0 \}
(ii) the magnitude of the force / $\boldsymbol{F}(\boldsymbol{r})$ | depends only of the distance $|\boldsymbol{r}|$ from the origin. \{spherically symmetric\}

$$
\overrightarrow{\mathbf{F}}(\overrightarrow{\mathbf{r}})=\hat{\mathbf{r}} \mathrm{f}(\mathrm{r})
$$

The simplest way to analyze the motion of the object is to use spherical polar coordinates.

Spherical Polar Coordinates $\{r, \theta, \varphi\}$

Figure 4.16

Spherical Polar Coordinates

The direction vectors for spherical polar coordinates are $\hat{\mathbf{r}} \hat{\boldsymbol{\theta}} \hat{\boldsymbol{\varphi}}$

Figure 4.17

A central and spherically symmetric force, using spherical polar coordinates
$\vec{F}(\vec{r})=f(r) \hat{e}_{r}$
$m \ddot{\vec{r}}=f(r) \hat{e}_{r}$ where $\vec{r}=r \hat{e}_{r}$

"The origin is the center of force."

Conservative central forces

$$
\boldsymbol{F}(\boldsymbol{r})=-\nabla U(r)
$$

Or, handwritten,

$$
\vec{F}(\vec{r})=-\nabla U(r)
$$

In words, the potential energy function U (which is a scalar) depends only on the distance from the center of force, r.
$\mathrm{U}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{U}(r)$ where $r=\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}}$
$\mathrm{U}(\mathrm{r})$ is called a spherically symmetric potential.

You should know the gradient operator in spherical polar coordinates,

$$
\nabla f=\hat{r} \frac{\partial f}{\partial r}+\hat{\theta} \frac{1}{r} \frac{\partial f}{\partial \theta}+\hat{\phi} \frac{1}{r \sin \theta} \frac{\partial f}{\partial \phi}
$$

(study the formulas inside the back cover of the book)

So, for a spherically symmetric potential, U(r)

$$
\begin{aligned}
& \nabla U=\hat{r} \frac{d V}{d r} \\
& F_{r}(r)=-d U / d r
\end{aligned}
$$

The Coulomb force and the corresponding potential energy

$$
\begin{aligned}
\vec{F}_{c}(\vec{r}) & =\frac{k Q q}{r^{2}} \hat{e}_{r} \\
k & =8.99 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{c}^{2} \\
& =8.99 \times 10^{9} \mathrm{Vm} / \mathrm{c}
\end{aligned}
$$

$$
\begin{aligned}
& \vec{F}_{c}=-\nabla U_{c}=-\hat{e}_{r} \frac{d U_{c}}{d r} \\
& \therefore U_{c}(r)=\frac{k Q q}{r}
\end{aligned}
$$

Example. Hydrogen atom.

$$
\begin{array}{ll}
\theta_{\cdots} \cdots \theta_{e, q} & Q=e \\
P, Q & q=-e \\
U_{c}=-8.99 \times 10^{9} \frac{\mathrm{Vm}_{\mathrm{m}}}{c} e 1.6 \times 10^{-19} \mathrm{c} / \mathrm{r} \\
U_{c}=\frac{-1.438}{r} e V \cdot n m
\end{array}
$$

NEWTON'S THEORY OF UNIVERSAL GRAVITATION

Imagine a large mass M (like the sun; or the Earth) and a smaller mass m (like a planet; or a satellite).
The force on mass m is

$$
\mathbf{F}=-\frac{\mathrm{GMm}}{\mathrm{r}^{2}} \mathbf{e}_{\mathbf{r}}
$$

More complete ...

- Both masses are attracted toward each other -- Newton's third law.
- Both masses revolve around the CoM, and the CoM is fixed.
m, a small mass;

The potential energy function is

$$
\mathrm{U}(\mathrm{r})=-\mathrm{GMm} / \mathrm{r}
$$

where $G=6.67 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~s}^{-2} \mathrm{~kg}^{-1}$.
We have a spherically symmetric potential assuming the bodies are themselves spherically symmetric.

The Earth is slightly oblate, so the potential energy of the Earth-Moon system is not truly central.

Furthermore...

There are tides.

- Synchronicity of the Moon

$$
\tau_{\text {revolutions }}=\tau_{\text {rotations Moon }} ;
$$

reason ... because of ancient tides in the Moon; "tidal evolution".

- Today tides in the Earth are dissipating energy; \therefore the orbit radius is increasing and the period of rotation of the Earth is increasing.
- Angular momentum is conserved,

$$
\dot{\mathrm{L}}_{\mathrm{rotE}} \dot{+} \mathrm{L}_{\mathrm{revE}}=0
$$

Tidal evolution of the Earth moon system today ..
$\mathrm{r}=38 \mathrm{~mm} / \mathrm{yr}$
and $\tau_{\text {rotE }}=23 \mu \mathrm{~s} / \mathrm{yr}$

Radial motion in a spherically

 symmetric potential

This is an example of "1-dimensional motion" in three dimensions.

If the angular momentum is 0 then the mass m just moves on a radial line through the origin.

Example

An asteroid falls radially toward the Earth, with zero angular momentum relative the Earth.

Assume these parameters:

- When the asteroid is at distance r_{0} from the Earth (r = distance from the center of the Earth) the velocity is 0 .
- Pick a number: let's try
$r_{0}=$ earth-moon distance $=384,000 \mathrm{~km}$.
Never mind how this unusual initial condition might be created; just take it as given.
- The asteroid mass; suppose $R_{a}=1 \mathrm{~km}$; then the mass is

$$
\mathrm{m}=4 / 3 \pi \mathrm{R}_{\mathrm{a}}^{3} \cdot\left(5 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)=2 \times 10^{13} \mathrm{~kg}
$$

First question

Calculate the kinetic energy of the asteroid when it hits the Earth.

Solution

For this we only need an algebraic calculation using conservation of energy ...

$$
\begin{aligned}
& \mathrm{E}=1 / 2 \mathrm{~m} \mathrm{v}^{2}-\mathrm{GMm} / \mathrm{r} \\
& \therefore \mathrm{~T}_{\text {hit }}-\mathrm{GMm} / \mathrm{R}_{\oplus}=-\mathrm{GMm} / \mathrm{r}_{0} \\
& \mathrm{~T}_{\text {hit }}=\operatorname{GMm}\left(1 / \mathrm{R}_{\oplus}-1 / \mathrm{r}_{0}\right) \\
& \quad G M_{\oplus} / R_{\oplus}^{2}=g \text { and } 1 / r_{0} \approx 0 \text {, so } \\
& \mathrm{T}_{\text {hit }}=\mathrm{mg} \mathrm{R}_{\oplus}=2 \mathrm{E} 13 \times 9.8 \times 6.4 \mathrm{E} 6 \mathrm{~J} \\
& \mathrm{~T}_{\text {hit }}=1.2 \times 10^{21} \mathrm{~J}=1.2 \times 10^{6} \text { petajoules }
\end{aligned}
$$

Compare largest ever H bomb = "Tsar Bomba" $=$ 50 megaton $T N T=210 \mathrm{PJ}$

Second question ...

Calculate the time it will take for the asteroid to fall to the surface of the Earth, from the initial distance r_{0}.

Solution

This is a time calculation, so we need to solve a differential equation.

$$
\int \sqrt{\frac{u}{1-u}} d u=
$$

Moon to Earth travel time (from TEI SPS ignition to splashdown):
\{Trans•Earth•Injection ; Service•Propulsion•System \}
Apollo 11: 2 days 11 hours 55 minutes
Apollo 12: 3 days 9 minutes
Apollo 14: 2 days 19 hours 26 minutes
Apollo 15: 2 days 23 hours 23 minutes
Apollo 16: 2 days 17 hours 30 minutes
Apollo 17: 2 days 19 hours 49 minutes

Homework Assignment \#8 due in class Wednesday, October 25
[37] Problem 4.26 *
[38] Problem $4.28^{* *}$ and Problem $4.29^{* *}$ [Computer]
[39] Problem $4.33^{* *}$ [Computer]
[40] Problem $4.34^{* *}$
[41] Problem $4.37^{* * *}$ [Computer]
[42] Problem $4.38^{* * *}$ [Computer]
Use the cover page.
This is a long assignment, so start working on it now.

