IN CLASS WORK

A uniform solid cylinder rolls down an inclined plane in Earth's gravity.

Parameters:

- mass $=M$, radius $=R$ and length $=d$
- angle of incline $=\theta$
- friction: it rolls without slipping
- initial state: the cylinder is at rest with the center of mass $y_{C M}=h$ above the horizontal plane.
(1) Use conservation of energy to calculate the velocity v when the cylinder has descended from $y_{C M}=h$ to $y_{C M}=R$.

(2) The result of (1) implies that the center of mass moves down the incline with constant acceleration. Calculate the acceleration.
(3) Repeat the calculations of (1) and (2), but now for a hollow cylinder.
(4) Repeat the calculations of (1) and (2), but now assuming there is no friction ;
i.e., the cylinder just slides down without rotating.

REFERENCE: Example 4.9.

