Chapter 5. Oscillations

Section 5.1.Hooke's lawSection 5.2.Simple Harmonic Motion

Read Sections 5.1 and 5.2.

Robert Hooke (1635 – 1703) lived at the same time as Isaac Newton. (Hooke was a little older.)

They worked on similar topics in physics [mechanics; optics; microscopes (Hooke) and telescopes (Newton)].

But they were not friends, because each one thought that he was superior to the other guy.

5.1. Hooke's law

• The force exerted by a spring (stretched or compressed) is $F = -k(l - l_0)$;

 $(l = length, l_0 = equilibrium length)$

- In the figure, let x be the displacement of m from equilibrium; i.e., the length of the spring is $l = l_0 + x$.
- Primary equations F(x) = -kx; $U(x) = \frac{1}{2}kx^2$; $F = -\frac{dU}{dx}$

You must understand ... $E = \frac{1}{2} k A^{2}$ and $E = \frac{1}{2} m v_{0}^{2}$ and $E = \frac{1}{2} m v^{2} + \frac{1}{2} k x^{2}$.

Figure 5.1 A mass *m* with potential energy $U(x) = \frac{1}{2}kx^2$ and total energy *E* oscillates between the two turning points at $x = \pm A$, where U(x) = E and the kinetic energy is zero.

Eq. (1) has many solutions ... I sine and cosine solutions: *complex* exponential solutions; l linear combinations of solutions (*the superposition principle);* **Initial conditions** are necessary to determine a unique solution. We could write the solution in several ways. We could write ... $x(t) = A \cos(\omega t) + B \sin(\omega t);$ in this form, the initial position is $x_0 = x(0) = A$ and the initial velocity is $v_0 = \dot{x}(0) = \omega B$.

 $(A = x_0 \text{ and } B = v_0 / \omega)$

Figure 5.3

Figure 5.3 (a) Oscillations in which the cart is released from x_0 at t = 0 follow a cosine curve. (b) If the cart is kicked from the origin at t = 0, the oscillations follow a sine curve with initial slope v_0 . In either case the period of the oscillations is $\tau = 2\pi/\omega = 2\pi\sqrt{m/k}$ and is the same whatever the values of x_0 or v_0 .

Example (b) is an example of a *phase-shifted cosine solution*, where the phase shift is 90 degrees.

(a): $x(t) = x_0 \cos(\omega t)$ (b): $x(t) = (v_0/\omega) \sin(\omega t)$ $= (v_0/\omega) \cos(\omega t - \pi/2)$ 90 deg

The general phase-shifted cosine solution is A = amplitude; $\mathbf{x}(t) = \mathbf{A} \cos(\omega t - \delta)$. δ = phase shift. This is the same as $\mathbf{x}(t) = \mathbf{B}_1 \cos(\omega t) + \mathbf{B}_2 \sin(\omega t) ,$ where $B_1 = A \cos \delta$ and $B_2 = A \sin \delta$. Or, the general solution could be written as the real part of a complex exponential; e.g., $x(t) = C_1 e^{i\omega t} + C_1^{\bigstar} e^{-i\omega t}$ //second derivative of e $\pm i\omega t$ = $-\omega^2$ e $\pm i\omega t$ // Note: $z + z^ = 2 \operatorname{Re}(z)$

Relations between different functional forms

(1) x(+) = B, cos we + Bz sin wt = A cos (wt-8) = A as & wsot + A sin & si wt So $\int B_1 = A \cos \delta$ $2 B_2 = A \sin \delta$; or: $B_1^2 + B_2^2 = A^2$ $+ \cos \delta = B_2/B_1$

(2) $\chi(t) = C_1 e^{i\omega t} + C_1 t e^{-i\omega t}$ where C1 = |C1 = 15 = $|c_1| \int e^{i(\omega t - \delta)} + e^{-i(\omega t - \delta)}$ = 1C, 1. 2 cos (wt-8) = A los (wt-S) : A = 2/G/ and G+G = A Cos d

Figure 5.5 A geometrical picture of the complex exponential function

$$C e^{i\omega t}$$

- x + i y undergoes clockwise circular motion;
- x undergoes S H M with phase shift δ
- **undergoes** S H M with phase shift δ + π/2

- Simple harmonic motion occurs for a mass attached to the end of a spring.
- Simple harmonic motion occurs in many other examples in mechanics.
- Harmonic time dependence (cos ωt or exp iωt) occurs in many other examples in physics.
- For example, waves,

 $\Phi = \cos(kx - \omega t)$ or $\exp i(kx - \omega t)$

Show that the bottle undergoes S. H. M.

Let x be the displacement <u>downward</u> from equilibrium. $d = d_0 + x$. Understand the sign. Then Newton's second law, $m\ddot{x} = mg - \rho_{\mu\nu} g A (d_{\rho} + x)$ gravity and buoyancy forces Equilibrium is at x = 0 , so $mg = \rho_w g A d_0$. Thus $\ddot{x} = -\omega^2 x$ (★) where $\omega^2 = \rho_{\omega} g A / m = g / d_{\rho}$. And (\bigstar) is the equation for S. H. M.

Taylor: "*Try the experiment yourself. But be aware that the details of the flow of water around the bottle complicate the situation. The calculation here is a very simplified version of the truth.*"

Homework Assignment #9 due in class Friday, November 4 [41] Problem 4.41 and Problem 4.43 [42] Problem 5.3 * [43] Problem 5.5 * [44] Problem 5.9 * [45] Problem 5.12 ** [46] Problem 5.18 ***

Use the cover sheet.

Do it now so you will have time to study for the ...

Second Exam: Friday November 3