Chapter 5. Oscillations

Section 5.1. Hooke's law
 Section 5.2. Simple Harmonic Motion

Read Sections 5.1 and 5.2.
Robert Hooke (1635-1703) lived at the same time as Isaac Newton.
(Hooke was a little older.)
They worked on similar topics in physics [mechanics; optics; microscopes (Hooke) and telescopes (Newton)].

But they were not friends, because each one thought that he was superior to the other guy.

5.1. Hooke's law

- The force exerted by a spring (stretched or compressed) is $\mathrm{F}=-\mathrm{k}\left(l-l_{0}\right)$;

$$
\left(l=\text { length }, l_{0}=\text { equilibrium length }\right)
$$

- In the figure, let x be the displacement of m from equilibrium; i.e., the length of the spring is $l=l_{0}+x$.
- Primary equations

$$
F(x)=-k x ; \quad U(x)=1 / 2 k^{2} \quad ; \quad F=-d U / d x
$$

You must understand ...

$$
E=1 / 2 \mathrm{k} \mathrm{~A}^{2}
$$

and

$$
\mathrm{E}=1 / 2 \mathrm{~m} \mathrm{v}_{0}^{2}
$$

and $E=1 / 2 m v^{2}+1 / 2 k x^{2}$.

Figure 5.1 A mass m with potential energy $U(x)=\frac{1}{2} k x^{2}$ and total energy E oscillates between the two turning points at $x= \pm A$, where $U(x)=E$ and the kinetic energy is zero.

5.2. Simple Harmonic Motion

The equation of motion is

$$
m{ }^{\prime \prime} \mathrm{x}=-\mathrm{kx}
$$

Or, write

$$
\begin{equation*}
\ddot{x}=-\omega^{2} x \tag{1}
\end{equation*}
$$

where $\omega=\sqrt{\mathrm{k} / \mathrm{m}}$.

Eq. (1) has many solutions ...
I sine and cosine solutions;
I complex exponential solutions;
I linear combinations of solutions (the superposition principle);
I Initial conditions are necessary to determine a unique solution.

We could write the solution in several ways. We could write ...

$$
x(t)=A \cos (\omega t)+B \sin (\omega t) ;
$$

in this form, the initial position is

$$
x_{0}=x(0)=A
$$

and the initial velocity is

$$
\begin{aligned}
& v_{0}=\dot{x}(0)=\omega B . \\
& \quad\left(A=x_{0} \text { and } B=v_{0} / \omega\right)
\end{aligned}
$$

Figure 5.3

Figure 5.3 (a) Oscillations in which the cart is released from x_{0} at $t=0$ follow a cosine curve. (b) If the cart is kicked from the origin at $t=0$, the oscillations follow a sine curve with initial slope v_{0}. In either case the period of the oscillations is $\tau=2 \pi / \omega=2 \pi \sqrt{m / k}$ and is the same whatever the values of x_{0} or v_{0}.

Example (b) is an example of a phaseshifted cosine solution, where the phase shift is 90 degrees.
(a): $x(t)=x_{0} \cos (\omega t)$
(b) : $\mathrm{x}(\mathrm{t})=\left(\mathrm{v}_{0} / \omega\right) \sin (\omega \mathrm{t})$

$$
=\left(\mathrm{v}_{0} / \omega\right) \cos (\omega \mathrm{t}-\pi / 2)
$$

*The general phase-shifted cosine solution is

$$
x(t)=A \cos (\omega t-\delta)
$$

A = amplitude;
$\delta=$ phase shift.

This is the same as

$$
\mathrm{x}(\mathrm{t})=\mathrm{B}_{1} \cos (\omega \mathrm{t})+\mathrm{B}_{2} \sin (\omega \mathrm{t}),
$$

where $\mathrm{B}_{1}=\mathrm{A} \cos \delta$ and $\mathrm{B}_{2}=\mathrm{A} \sin \delta$.

* Or, the general solution could be written as the real part of a complex exponential; e.g.,

$$
\mathrm{x}(\mathrm{t})=\mathrm{C}_{1} \mathrm{e}^{\mathrm{i} \omega \mathrm{t}}+\mathrm{C}_{1}^{*} \mathrm{e}^{-\mathrm{i} \omega \mathrm{t}}
$$

//second derivative of $\mathrm{e}^{ \pm i \omega t}=-\omega^{2} \mathrm{e}^{ \pm i \omega t} / /$
Note: $\quad z+z^{*}=2 \operatorname{Re}(z)$

Relations between different functional forms
(1)

$$
\begin{aligned}
x(t) & =B_{1} \cos \omega t+B_{2} \sin \omega t \\
& =A \cos (\omega t-\delta) \\
& =A \cos \delta \cos \omega t+A \sin \delta \sin \omega t
\end{aligned}
$$

$$
\text { So } \begin{cases}B_{1}=A \cos \delta ; & B_{1}^{2}+B_{2}^{2}=A^{2} \\ B_{2}=A \sin \delta ; & \tan \delta=B_{2} / B_{1}\end{cases}
$$

$$
\text { (2) } \begin{aligned}
& x(t)=c_{1} e^{i \omega t}+c_{1}^{*} e^{-i \omega t} \\
& \text { whoa } c_{1}=\left|c_{1}\right| e^{-i \delta} \\
&=\left|c_{1}\right|\left\{e^{i(\omega t-\delta)}+e^{-i(\omega t-\delta)}\right\} \\
&=\left|c_{1}\right| \cdot 2 \cos (\omega t-\delta) \\
&= A \cos (\omega t-\delta) \\
& \therefore A=2\left|c_{1}\right| \text { and } c_{1}+c_{1}^{*}=A \cos \delta
\end{aligned}
$$

Figure 5.5

A geometrical picture of the complex exponential function

$C e^{i \omega t}$

- $x+i y$ undergoes clockwise circular motion;
- \quad x undergoes S H M with phase shift δ
- y undergoes S H M with phase shift $\delta+\pi / 2$

- Simple harmonic motion occurs for a mass attached to the end of a spring.
- Simple harmonic motion occurs in many other examples in mechanics.
- Harmonic time dependence ($\cos \omega t$ or exp i $\omega \mathrm{t}$) occurs in many other examples in physics.
- For example, waves,

$$
\Phi=\cos (k x-\omega t) \quad \text { or } \quad \exp i(k x-\omega t)
$$

Example 5.2

a bottle in a bucket of water

Show that the bottle undergoes S. H. M.

Let x be the displacement downward from equilibrium.
Then $\quad d=d_{0}+x . \quad$ Understand the sign.
Newton's second law,

$$
m \ddot{x}=m g-\rho_{w} g A\left(d_{o}+x\right)
$$

gravity and buoyancy forces

Equilibrium is at $x=0$, so

$$
m g=\rho_{w} g A d_{0} .
$$

Thus

$$
\begin{equation*}
\ddot{x}=-\omega^{2} x \tag{t}
\end{equation*}
$$

where

$$
\omega^{2}=\rho_{w} g A / m=g / d_{0} .
$$

And $(*)$ is the equation for S. H. M.
Taylor: " Try the experiment yourself. But be aware that the details of the flow of water around the bottle complicate the situation. The calculation here is a very simplified version of the truth."

Energy considerations in S.H.M.

$\underline{x}(t)=A \cos (\omega t-\delta)$
Energy is conserved in SHM.
$\mathrm{T}=1 / 2 \mathrm{~m}(\dot{\mathrm{x}})^{2}=1 / 2 \mathrm{~mA}^{2} \omega^{2} \sin ^{2}(\omega \mathrm{t}-\delta)$
$\mathrm{U}=1 / 2 \mathrm{kx}^{2}=1 / 2 \mathrm{kA}^{2} \cos ^{2}(\omega \mathrm{t}-\delta)$
Recall, $\mathrm{m} \omega^{2}=\mathrm{k}$.

$$
\left.\mathrm{T}+\mathrm{U}=1 / 2 \mathrm{k} \mathrm{~A}^{2} \quad \text { (constant in } \mathrm{t}\right)
$$

or, $\mathrm{T}+\mathrm{U}=1 / 2 \mathrm{mv}(0)^{2} \quad$ (same constant)

Homework Assignment \#9

due in class Friday, November 4
[41] Problem 4.41 and Problem 4.43
[42] Problem 5.3*
[43] Problem 5.5 *
[44] Problem 5.9 *
[45] Problem 5.12 **
[46] Problem 5.18 ***
Use the cover sheet.

Do it now so you will have time to study for the ...

Second Exam: Friday November 3

